論文の概要: Challenges in Measuring Bias via Open-Ended Language Generation
- arxiv url: http://arxiv.org/abs/2205.11601v1
- Date: Mon, 23 May 2022 19:57:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 15:15:46.661110
- Title: Challenges in Measuring Bias via Open-Ended Language Generation
- Title(参考訳): オープンエンド言語生成によるバイアス測定の課題
- Authors: Afra Feyza Aky\"urek, Muhammed Yusuf Kocyigit, Sejin Paik, Derry
Wijaya
- Abstract要約: 我々は、プロンプトセット、メトリクス、自動ツール、サンプリング戦略の特定の選択がバイアス結果にどのように影響するかを分析する。
オープンな言語生成におけるバイアスを報告するためのレコメンデーションを提供する。
- 参考スコア(独自算出の注目度): 1.5552869983952944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researchers have devised numerous ways to quantify social biases vested in
pretrained language models. As some language models are capable of generating
coherent completions given a set of textual prompts, several prompting datasets
have been proposed to measure biases between social groups -- posing language
generation as a way of identifying biases. In this opinion paper, we analyze
how specific choices of prompt sets, metrics, automatic tools and sampling
strategies affect bias results. We find out that the practice of measuring
biases through text completion is prone to yielding contradicting results under
different experiment settings. We additionally provide recommendations for
reporting biases in open-ended language generation for a more complete outlook
of biases exhibited by a given language model. Code to reproduce the results is
released under https://github.com/feyzaakyurek/bias-textgen.
- Abstract(参考訳): 研究者は、事前訓練された言語モデルに適合する社会的バイアスを定量化する多くの方法を考案した。
いくつかの言語モデルは、一連のテキストプロンプトによって一貫性のある補完を生成することができるため、社会的グループ間のバイアスを測定するためにいくつかのプロンプトデータセットが提案されている。
本稿では,プロンプトセット,メトリクス,自動ツール,サンプリング戦略の特定の選択がバイアス結果に与える影響を分析する。
テキスト補完によるバイアス測定の実践は,異なる実験条件下では矛盾する結果をもたらす傾向にあることがわかった。
さらに、ある言語モデルで示されるバイアスのより完全な展望のために、オープンエンド言語生成におけるバイアスの報告を推奨する。
結果を再現するためのコードはhttps://github.com/feyzaakyurek/bias-textgenでリリースされている。
関連論文リスト
- GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models [75.04426753720553]
開集合におけるバイアスを特定し,定量化し,説明するための枠組みを提案する。
このパイプラインはLarge Language Model (LLM)を活用して、一連のキャプションから始まるバイアスを提案する。
このフレームワークには、OpenBiasとGradBiasの2つのバリエーションがあります。
論文 参考訳(メタデータ) (2024-08-29T16:51:07Z) - CBBQ: A Chinese Bias Benchmark Dataset Curated with Human-AI
Collaboration for Large Language Models [52.25049362267279]
本稿では,人的専門家と生成言語モデルによって共同で構築された100万以上の質問からなる中国語バイアスベンチマークデータセットを提案する。
データセットのテストインスタンスは、手作業による厳格な品質管理を備えた3K以上の高品質テンプレートから自動的に抽出される。
大規模な実験により、データセットがモデルバイアスを検出することの有効性が実証された。
論文 参考訳(メタデータ) (2023-06-28T14:14:44Z) - Exposing Bias in Online Communities through Large-Scale Language Models [3.04585143845864]
この研究は、言語モデルにおけるバイアスの欠陥を使用して、6つの異なるオンラインコミュニティのバイアスを調査します。
得られたモデルのバイアスは、異なる人口層を持つモデルに促し、これらの世代における感情と毒性の値を比較することで評価される。
この作業は、トレーニングデータからバイアスがどの程度容易に吸収されるかを確認するだけでなく、さまざまなデータセットやコミュニティのバイアスを特定し比較するためのスケーラブルな方法も提示する。
論文 参考訳(メタデータ) (2023-06-04T08:09:26Z) - On the Blind Spots of Model-Based Evaluation Metrics for Text Generation [79.01422521024834]
テキスト生成評価指標のロバスト性分析に有用であるが,しばしば無視される手法を探索する。
我々は、幅広い潜在的な誤差を設計、合成し、それらが測定値の余計な低下をもたらすかどうかを確認する。
私たちの実験では、既存のメトリクスの興味深い不感、バイアス、あるいは抜け穴が明らかになりました。
論文 参考訳(メタデータ) (2022-12-20T06:24:25Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
多様な言語からなる単言語BERTモデルにおけるバイアスについて検討する。
文の擬似類似度に基づいて,任意のバイアスを測定するテンプレートベースの手法を提案する。
偏見探索の現在の手法は言語に依存していると結論付けている。
論文 参考訳(メタデータ) (2022-11-25T23:38:08Z) - Measuring Fairness with Biased Rulers: A Survey on Quantifying Biases in
Pretrained Language Models [2.567384209291337]
自然言語処理資源における偏見パターンの認識の高まりは、偏見と公平さを定量化するために多くの指標を動機付けてきた」。
本稿では,事前訓練された言語モデルの公平度指標に関する既存の文献を調査し,互換性を実験的に評価する。
その結果、多くの指標は互換性がなく、(i)テンプレート、(ii)属性とターゲット種子、(iii)埋め込みの選択に強く依存していることがわかった。
論文 参考訳(メタデータ) (2021-12-14T15:04:56Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - The Authors Matter: Understanding and Mitigating Implicit Bias in Deep
Text Classification [36.361778457307636]
ディープテキスト分類モデルは、特定の人口統計グループの著者によって書かれたテキストのバイアス結果を生成することができます。
本論文では,異なる人口集団の異なるテキスト分類タスクに暗黙のバイアスが存在することを示す。
そして、暗黙のバイアスの知識を深めるために、学習に基づく解釈方法を構築します。
論文 参考訳(メタデータ) (2021-05-06T16:17:38Z) - BOLD: Dataset and Metrics for Measuring Biases in Open-Ended Language
Generation [42.34923623457615]
Open-Ended Language Generationデータセットのバイアスは23,679の英語テキスト生成プロンプトで構成されている。
3つの人気のある言語モデルから生成されたテキストを調べると、これらのモデルの大半は、人によるウィキペディアのテキストよりも大きな社会的バイアスを示すことが明らかになっている。
論文 参考訳(メタデータ) (2021-01-27T22:07:03Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
イメージキャプションや機械翻訳などのタスクを評価するデファクトメトリクスとして、いくつかの一般的な指標が残っている。
これは、使いやすさが原因でもあり、また、研究者がそれらを見て解釈する方法を知りたがっているためでもある。
本稿では,モデルの自動評価方法について,コミュニティにより慎重に検討するよう促す。
論文 参考訳(メタデータ) (2020-10-26T13:57:20Z) - Towards Controllable Biases in Language Generation [87.89632038677912]
本研究では、特定の人口集団の言及を含む入力プロンプトによって生成されたテキストの社会的バイアスを誘導する手法を開発した。
1 つの人口統計学において負のバイアスを誘発し、もう1 つの人口統計学において正のバイアスを誘導し、2 つのシナリオを分析する。
論文 参考訳(メタデータ) (2020-05-01T08:25:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。