論文の概要: Strategic Argumentation Dialogues for Persuasion: Framework and
Experiments Based on Modelling the Beliefs and Concerns of the Persuadee
- arxiv url: http://arxiv.org/abs/2101.11870v1
- Date: Thu, 28 Jan 2021 08:49:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-01-31 18:19:06.623706
- Title: Strategic Argumentation Dialogues for Persuasion: Framework and
Experiments Based on Modelling the Beliefs and Concerns of the Persuadee
- Title(参考訳): 説得のための戦略的議論対話--説得の信念と懸念のモデル化に基づく枠組みと実験
- Authors: Emmanuel Hadoux and Anthony Hunter and Sylwia Polberg
- Abstract要約: 特定の対話において議論が良いかどうかを決定するための2つの重要な次元は、意図する観衆が議論と反論を信じる程度であり、議論が意図する観衆の関心に与える影響である。
本稿では,これらのモデルを用いて,説得的対話における移動の選択を最適化する枠組みを提案する。
- 参考スコア(独自算出の注目度): 6.091096843566857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Persuasion is an important and yet complex aspect of human intelligence. When
undertaken through dialogue, the deployment of good arguments, and therefore
counterarguments, clearly has a significant effect on the ability to be
successful in persuasion. Two key dimensions for determining whether an
argument is good in a particular dialogue are the degree to which the intended
audience believes the argument and counterarguments, and the impact that the
argument has on the concerns of the intended audience. In this paper, we
present a framework for modelling persuadees in terms of their beliefs and
concerns, and for harnessing these models in optimizing the choice of move in
persuasion dialogues. Our approach is based on the Monte Carlo Tree Search
which allows optimization in real-time. We provide empirical results of a study
with human participants showing that our automated persuasion system based on
this technology is superior to a baseline system that does not take the beliefs
and concerns into account in its strategy.
- Abstract(参考訳): 説得は人間の知性の重要かつ複雑な側面である。
対話を通じて行われる場合、良い議論の展開、それゆえ反論は、説得に成功する能力に明らかに大きな影響を与える。
議論が特定の対話で良いかどうかを決定するための2つの重要な寸法は、意図した聴衆が議論と反論を信じる程度であり、議論が意図した聴衆の懸念に与える影響である。
本稿では,その信念と懸念をモデル化し,これらのモデルを用いて説得対話における移動の選択を最適化するための枠組みを提案する。
我々のアプローチはモンテカルロ木探索に基づいており、リアルタイムに最適化できる。
我々は、この技術に基づく自動説得システムが、その戦略における信念や懸念を考慮しないベースラインシステムよりも優れていることを示す、人間の参加者による研究の実証結果を提供する。
関連論文リスト
- Persua: A Visual Interactive System to Enhance the Persuasiveness of
Arguments in Online Discussion [52.49981085431061]
説得力のある議論を書く能力を高めることは、オンラインコミュニケーションの有効性と文明性に寄与する。
オンライン議論における議論の説得力向上を支援するツールの設計目標を4つ導き出した。
Persuaは対話型ビジュアルシステムであり、議論の説得力を高めるための説得戦略の例に基づくガイダンスを提供する。
論文 参考訳(メタデータ) (2022-04-16T08:07:53Z) - E-ffective: A Visual Analytic System for Exploring the Emotion and
Effectiveness of Inspirational Speeches [57.279044079196105]
E-ffective(エフェクティブ)は、音声の専門家や初心者が、音声要因の役割と効果的な音声への貢献の両方を分析することのできる視覚分析システムである。
E-spiral(音声の感情の変化を視覚的にコンパクトに表現する)とE-script(音声コンテンツを主要な音声配信情報に結びつける)の2つの新しい可視化技術がある。
論文 参考訳(メタデータ) (2021-10-28T06:14:27Z) - Towards Understanding Persuasion in Computational Argumentation [10.089382889894246]
議論における意見形成と説得は、議論そのもの、議論の源、聴衆の特性の3つの主要な要因によって影響を受ける。
この論文は、計算的説得におけるソース、オーディエンス、言語の影響を相対的に理解するためにいくつかの貢献をしている。
論文 参考訳(メタデータ) (2021-10-03T19:36:21Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
本稿では、文脈経路に沿った2つの議論間の談話関係が、議論の説得力を特定する上で不可欠な要素であることを実証的に示す。
本研究では,文レベルの構造情報を大規模言語モデルから派生した文脈的特徴に注入・融合するDisCOCを提案する。
論文 参考訳(メタデータ) (2021-06-02T06:49:19Z) - Examining the Ordering of Rhetorical Strategies in Persuasive Requests [58.63432866432461]
本研究では,大規模ローン要求コーパスからのテキスト要求において,コンテンツと修辞戦略をアンタングル化するために,変分オートエンコーダモデルを用いる。
特定の(順序の)戦略が要求の内容と一意に相互作用し、成功率に影響を与え、その結果、要求の説得力に影響を及ぼす。
論文 参考訳(メタデータ) (2020-10-09T15:10:44Z) - Exploring the Role of Argument Structure in Online Debate Persuasion [39.74040217761505]
オンライン討論会における議論における議論の談話構造の役割について考察する。
我々は、より優れた予測性能を達成する上で、引数構造が重要な役割を担っていることを発見した。
論文 参考訳(メタデータ) (2020-10-07T17:34:50Z) - Influence via Ethos: On the Persuasive Power of Reputation in
Deliberation Online [10.652828373995513]
オンライン上での個人間の協議は、投票、購入、寄付、その他の重要なオフライン行動を推進する意見を形成する上で重要な役割を果たす。
我々の研究は、個人の「意見」である$textitethos$の説得力を調べる。
個人の評判は、議論の妥当性、強さ、提示以上の説得率に大きな影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2020-06-01T04:25:40Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z) - What Changed Your Mind: The Roles of Dynamic Topics and Discourse in
Argumentation Process [78.4766663287415]
本稿では,議論の説得力において重要な要因を自動的に分析する研究について述べる。
議論的会話における潜在トピックや談話の変化を追跡できる新しいニューラルモデルを提案する。
論文 参考訳(メタデータ) (2020-02-10T04:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。