Fusion Moves for Graph Matching
- URL: http://arxiv.org/abs/2101.12085v1
- Date: Thu, 28 Jan 2021 16:09:46 GMT
- Title: Fusion Moves for Graph Matching
- Authors: Lisa Hutschenreiter, Stefan Haller, Lorenz Feineis, Carsten Rother,
Dagmar Kainm\"uller, Bogdan Savchynskyy
- Abstract summary: We contribute to approximate algorithms for the quadratic assignment problem also known as graph matching.
Inspired by the success of the fusion moves technique developed for multilabel discrete Markov random fields, we investigate its applicability to graph matching.
We show how it can be efficiently combined with the dedicated state-of-the-art Lagrange dual methods.
- Score: 35.27002115682325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We contribute to approximate algorithms for the quadratic assignment problem
also known as graph matching. Inspired by the success of the fusion moves
technique developed for multilabel discrete Markov random fields, we
investigate its applicability to graph matching. In particular, we show how it
can be efficiently combined with the dedicated state-of-the-art Lagrange dual
methods that have recently shown superior results in computer vision and
bio-imaging applications. As our empirical evaluation on a wide variety of
graph matching datasets suggests, fusion moves notably improve performance of
these methods in terms of speed and quality of the obtained solutions. Hence,
this combination results in a state-of-the-art solver for graph matching.
Related papers
- Differentiable Proximal Graph Matching [40.41380102260085]
We introduce an algorithm for graph matching based on the proximal operator, referred to as differentiable proximal graph matching (DPGM)
The whole algorithm can be considered as a differentiable map from the graph affinity matrix to the prediction of node correspondence.
Numerical experiments show that PGM outperforms existing graph matching algorithms on diverse datasets.
arXiv Detail & Related papers (2024-05-26T08:17:13Z) - Graph Mixup with Soft Alignments [49.61520432554505]
We study graph data augmentation by mixup, which has been used successfully on images.
We propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments.
arXiv Detail & Related papers (2023-06-11T22:04:28Z) - Synergistic Graph Fusion via Encoder Embedding [16.20934021488478]
We introduce a method called graph fusion embedding, designed for multi-graph embedding with shared sets.
Under the framework of supervised learning, our method exhibits a remarkable and highly desirable synergistic effect.
Our comprehensive simulations and real data experiments provide compelling evidence supporting the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-31T13:34:35Z) - Learning Heuristics for the Maximum Clique Enumeration Problem Using Low
Dimensional Representations [0.0]
We use a learning framework for a pruning process of the input graph towards reducing the clique of the maximum enumeration problem.
We study the role of using different vertex representations on the performance of this runtime method.
We observe that using local graph features in the classification process produce more accurate results when combined with a feature elimination process.
arXiv Detail & Related papers (2022-10-30T22:04:32Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Deep graph matching meets mixed-integer linear programming: Relax at
your own risk ? [8.05409526074409]
We propose an approach integrating a MILP formulation of the graph matching problem.
Similar approaches are derived by releasing the optimal guarantee of the graph matching solver and by introducing a quality level.
Our experimental evaluation gives several theoretical insights and guides the direction of deep graph matching methods.
arXiv Detail & Related papers (2021-08-01T08:29:55Z) - Stochastic Iterative Graph Matching [11.128153575173213]
We propose a new model, Iterative Graph MAtching, to address the graph matching problem.
Our model defines a distribution of matchings for a graph pair so the model can explore a wide range of possible matchings.
We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications.
arXiv Detail & Related papers (2021-06-04T02:05:35Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views.
We propose a new multi-view graph learning framework, which for the first time simultaneously models multi-view consistency and multi-view inconsistency in a unified objective function.
Experiments on twelve multi-view datasets have demonstrated the robustness and efficiency of the proposed approach.
arXiv Detail & Related papers (2020-08-24T06:11:29Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.