論文の概要: D3DLO: Deep 3D LiDAR Odometry
- arxiv url: http://arxiv.org/abs/2101.12242v1
- Date: Thu, 28 Jan 2021 19:23:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-01 19:30:27.867419
- Title: D3DLO: Deep 3D LiDAR Odometry
- Title(参考訳): D3DLO:深部3次元LiDARオドメトリー
- Authors: Philipp Adis, Nicolas Horst, Mathias Wien
- Abstract要約: LiDAR odometry (LO) は、その後のLiDAR点雲のアライメントを見つけるタスクを記述している。
このアライメントは、LiDARセンサーが装着されているプラットフォームの動きを推定するために使用することができる。
本稿では,3次元点雲を直接処理することでLOを学習するネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 1.1172382217477126
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: LiDAR odometry (LO) describes the task of finding an alignment of subsequent
LiDAR point clouds. This alignment can be used to estimate the motion of the
platform where the LiDAR sensor is mounted on. Currently, on the well-known
KITTI Vision Benchmark Suite state-of-the-art algorithms are non-learning
approaches. We propose a network architecture that learns LO by directly
processing 3D point clouds. It is trained on the KITTI dataset in an end-to-end
manner without the necessity of pre-defining corresponding pairs of points. An
evaluation on the KITTI Vision Benchmark Suite shows similar performance to a
previously published work, DeepCLR [1], even though our model uses only around
3.56% of the number of network parameters thereof. Furthermore, a plane point
extraction is applied which leads to a marginal performance decrease while
simultaneously reducing the input size by up to 50%.
- Abstract(参考訳): LiDAR odometry (LO) は、その後の LiDAR 点群のアライメントを見つけるタスクを記述する。
このアライメントは、LiDARセンサーが取り付けられているプラットフォームの動きを推定するために使用できます。
現在、有名なKITTI Vision Benchmark Suiteでは、最先端のアルゴリズムが非学習アプローチです。
3Dポイントクラウドを直接処理することでLOを学習するネットワークアーキテクチャを提案します。
KITTIデータセット上で、対応する点のペアを事前に定義することなく、エンドツーエンドでトレーニングされる。
KITTI Vision Benchmark Suiteの評価では、ネットワークパラメータの3.56%しか使用していないにもかかわらず、以前発表されたDeepCLR [1]と同じような性能を示している。
さらに、平面点抽出を適用し、同時に入力サイズを最大50%削減しながら、限界性能が低下する。
関連論文リスト
- V-DETR: DETR with Vertex Relative Position Encoding for 3D Object
Detection [73.37781484123536]
DETRフレームワークを用いた点雲のための高性能な3次元物体検出器を提案する。
限界に対処するため,新しい3次元相対位置(3DV-RPE)法を提案する。
挑戦的なScanNetV2ベンチマークで例外的な結果を示す。
論文 参考訳(メタデータ) (2023-08-08T17:14:14Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
本稿では,計算資源の割り当ての観点から,局所的な点集合体を再考する。
最も単純な柱ベースのモデルは、精度とレイテンシの両方を考慮して驚くほどよく機能することがわかった。
本研究は,3次元物体検出の高性能化のために,詳細な幾何学的モデリングが不可欠である,という一般的な直観に挑戦する。
論文 参考訳(メタデータ) (2023-05-08T17:59:14Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
SASA(Semantics-Augmented Set Abstraction)と呼ばれる新しい集合抽象化手法を提案する。
そこで本研究では, 推定点前景スコアに基づいて, より重要な前景点の維持を支援するセマンティックス誘導点サンプリングアルゴリズムを提案する。
実際には、SASAは、前景オブジェクトに関連する貴重な点を識別し、ポイントベースの3D検出のための特徴学習を改善するのに有効である。
論文 参考訳(メタデータ) (2022-01-06T08:54:47Z) - Efficient 3D Deep LiDAR Odometry [16.388259779644553]
PWCLO-Netという名前の効率的な3Dポイント・クラウド・ラーニング・アーキテクチャが最初に提案される。
アーキテクチャ全体は、コストボリュームとマスクの適応的な学習を実現するために、徹底的にエンドツーエンドに最適化されています。
論文 参考訳(メタデータ) (2021-11-03T11:09:49Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR
Point Clouds [2.924868086534434]
本稿では,ポイントクラウドの複数のプロジェクションを利用する3次元ポイントクラウドセマンティックセマンティックセマンティクスの新しいアプローチを提案する。
我々のMulti-Projection Fusionフレームワークは、2つの異なる高効率2次元完全畳み込みモデルを用いて球面および鳥眼の視射影を解析する。
論文 参考訳(メタデータ) (2020-11-03T19:40:43Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - LodoNet: A Deep Neural Network with 2D Keypoint Matchingfor 3D LiDAR
Odometry Estimation [22.664095688406412]
本稿では,LiDARフレームを画像空間に転送し,画像特徴抽出として問題を再構成することを提案する。
特徴抽出のためのスケール不変特徴変換(SIFT)の助けを借りて、マッチングキーポイントペア(MKP)を生成することができる。
畳み込みニューラルネットワークパイプラインは、抽出したMKPによるLiDARのオドメトリー推定のために設計されている。
提案手法,すなわちLodoNet は,KITTI odometry 推定ベンチマークで評価され,最先端の手法と同等あるいはそれ以上の結果が得られた。
論文 参考訳(メタデータ) (2020-09-01T01:09:41Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
最先端の手法では、深いニューラルネットワークを使用して、LiDARスキャンの各点のセマンティッククラスを予測する。
LiDAR測定を処理するための強力で効率的な方法は、2次元の画像のような投影を使うことである。
メモリの制約だけでなく、パフォーマンスの向上やランタイムの改善など、さまざまなテクニックを実証する。
論文 参考訳(メタデータ) (2020-04-06T11:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。