論文の概要: A Survey of Complex-Valued Neural Networks
- arxiv url: http://arxiv.org/abs/2101.12249v1
- Date: Thu, 28 Jan 2021 19:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 00:05:16.355021
- Title: A Survey of Complex-Valued Neural Networks
- Title(参考訳): 複雑値ニューラルネットワークに関する研究
- Authors: Joshua Bassey, Lijun Qian, Xianfang Li
- Abstract要約: 人工知能ニューラルネットワーク(ANN)ベースの機械学習モデルは、コンピュータビジョン、信号処理、無線通信など多くの分野に広く応用されている。
ANNや機械学習フレームワークの現在の実装のほとんどは、複素数ではなく実数を使っている。
複雑な数値を使用してANNを構築することへの関心が高まっており、実際の価値を持つニューラルネットワークよりも、いわゆるCVNN(complex-valued Neural Network)の潜在的なアドバンテージを探っている。
- 参考スコア(独自算出の注目度): 4.211128681972148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks (ANNs) based machine learning models and
especially deep learning models have been widely applied in computer vision,
signal processing, wireless communications, and many other domains, where
complex numbers occur either naturally or by design. However, most of the
current implementations of ANNs and machine learning frameworks are using real
numbers rather than complex numbers. There are growing interests in building
ANNs using complex numbers, and exploring the potential advantages of the
so-called complex-valued neural networks (CVNNs) over their real-valued
counterparts. In this paper, we discuss the recent development of CVNNs by
performing a survey of the works on CVNNs in the literature. Specifically, a
detailed review of various CVNNs in terms of activation function, learning and
optimization, input and output representations, and their applications in tasks
such as signal processing and computer vision are provided, followed by a
discussion on some pertinent challenges and future research directions.
- Abstract(参考訳): 人工知能ニューラルネットワーク(ANN)ベースの機械学習モデル、特にディープラーニングモデルは、コンピュータビジョン、信号処理、無線通信など、複雑な数値が自然あるいは設計によって発生する多くの分野に広く適用されている。
しかし、現在のANNと機械学習フレームワークの実装のほとんどは、複素数ではなく実数を使っている。
複素数を用いてANNを構築することに関心が高まり、現実値のそれに対するいわゆる複素値ニューラルネットワーク(CVNN)の潜在的なアドバンテージを探求する。
本稿では,CVNNの最近の発展について,文献におけるCVNNに関する研究を実践して論じる。
具体的には、アクティベーション機能、学習と最適化、入力と出力の表現、および信号処理やコンピュータビジョンなどのタスクにおけるそれらの応用に関する詳細なレビューを行い、それに続くいくつかの課題と今後の研究方向性について論じる。
関連論文リスト
- Scalable algorithms for physics-informed neural and graph networks [0.6882042556551611]
物理インフォームド機械学習(PIML)は、複雑な物理的および生物学的システムをシミュレートするための有望な新しいアプローチとして登場した。
PIMLでは、物理法則を適用し、時空領域のランダムな点で評価することで得られる追加情報から、そのようなネットワークを訓練することができる。
本稿では、主にフィードフォワードニューラルネットワークと自動微分に基づく物理情報ニューラルネットワーク(PINN)を用いて、物理を機械学習に組み込む一般的なトレンドについて概説する。
論文 参考訳(メタデータ) (2022-05-16T15:46:11Z) - Graph Neural Networks in IoT: A Survey [9.257834364029547]
IoT(Internet of Things)ブームは、人々の日常生活のほぼすべての部分に革命をもたらした。
ディープラーニングモデルは、IoTタスクの解決に広く採用されている。
グラフニューラルネットワーク(GNN)は、多くのIoT学習タスクで最先端の結果を達成するために実証されている。
論文 参考訳(メタデータ) (2022-03-29T22:27:59Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - exploRNN: Understanding Recurrent Neural Networks through Visual
Exploration [6.006493809079212]
リカレントニューラルネットワーク(RNN)は、シーケンシャルデータを処理することができる。
本稿では,RNNのための対話型学習可視化である ExploRNN を提案する。
LSTM細胞内のデータフローの詳細な検査を可能にするとともに、粗いレベルでRNNのトレーニングプロセスの概要を提供します。
論文 参考訳(メタデータ) (2020-12-09T15:06:01Z) - Spiking Neural Networks -- Part I: Detecting Spatial Patterns [38.518936229794214]
Spiking Neural Networks(SNN)は生物学的にインスパイアされた機械学習モデルで、バイナリとスパーススパイキング信号をイベント駆動のオンラインな方法で処理する動的ニューラルモデルに基づいている。
SNNは、学習と推論のためのエネルギー効率の良いコプロセッサとして出現しているニューロモルフィックコンピューティングプラットフォーム上で実装することができる。
論文 参考訳(メタデータ) (2020-10-27T11:37:22Z) - A Practical Tutorial on Graph Neural Networks [49.919443059032226]
グラフニューラルネットワーク(GNN)は、人工知能(AI)分野において最近人気が高まっている。
このチュートリアルでは、GNNのパワーとノベルティをAI実践者に公開している。
論文 参考訳(メタデータ) (2020-10-11T12:36:17Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Constructing Deep Neural Networks with a Priori Knowledge of Wireless
Tasks [37.060397377445504]
無線タスクに広く存在する2種類の置換不変性は、モデルパラメータの数を減らすために利用することができる。
可変DNN (permutation invariant DNN) と呼ばれる特性を満たす入出力関係を持つDNNの特殊構造を求める。
予測資源配分と干渉調整を例として,教師なし・教師なし学習による最適政策学習にPINNをいかに活用できるかを示す。
論文 参考訳(メタデータ) (2020-01-29T08:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。