Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust
- URL: http://arxiv.org/abs/2101.12501v1
- Date: Fri, 29 Jan 2021 10:13:56 GMT
- Title: Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust
- Authors: Thomas Chaffre, Julien Moras, Adrien Chan-Hon-Tong, Julien Marzat,
Karl Sammut, Gilles Le Chenadec, Benoit Clement
- Abstract summary: Navigation problems under unknown varying conditions are among the most important and well-studied problems in the control field.
Recent model-free adaptive control methods aim at removing this dependency by learning the physical characteristics of the plant directly from sensor feedback.
We propose a conceptually simple learning-based approach composed of a full state feedback controller, tuned robustly by a deep reinforcement learning framework.
- Score: 0.2770822269241973
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Navigation problems under unknown varying conditions are among the most
important and well-studied problems in the control field. Classic model-based
adaptive control methods can be applied only when a convenient model of the
plant or environment is provided. Recent model-free adaptive control methods
aim at removing this dependency by learning the physical characteristics of the
plant and/or process directly from sensor feedback. Although there have been
prior attempts at improving these techniques, it remains an open question as to
whether it is possible to cope with real-world uncertainties in a control
system that is fully based on either paradigm. We propose a conceptually simple
learning-based approach composed of a full state feedback controller, tuned
robustly by a deep reinforcement learning framework based on the Soft
Actor-Critic algorithm. We compare it, in realistic simulations, to a
model-free controller that uses the same deep reinforcement learning framework
for the control of a micro aerial vehicle under wind gust. The results indicate
the great potential of learning-based adaptive control methods in modern
dynamical systems.
Related papers
- Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance [1.099532646524593]
This paper presents a novel approach, merging the Maximum Entropy Deep Reinforcement Learning framework with a classic model-based control architecture, to formulate an adaptive controller.
Within this framework, we introduce a Sim-to-Real transfer strategy comprising the following components: a bio-inspired experience replay mechanism, an enhanced domain randomisation technique, and an evaluation protocol executed on a physical platform.
Our experimental assessments demonstrate that this method effectively learns proficient policies from suboptimal simulated models of the AUV, resulting in control performance 3 times higher when transferred to a real-world vehicle.
arXiv Detail & Related papers (2023-10-17T08:46:56Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - A stabilizing reinforcement learning approach for sampled systems with
partially unknown models [0.0]
We suggest a method to guarantee practical stability of the system-controller closed loop in a purely online learning setting.
To achieve the claimed results, we employ techniques of classical adaptive control.
The method is tested in adaptive traction control and cruise control where it proved to significantly reduce the cost.
arXiv Detail & Related papers (2022-08-31T09:20:14Z) - Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing [42.27572349747162]
We present a learning-based adaptive control strategy for aerial sliding tasks.
The proposed controller structure combines data-driven and model-based control methods.
Compared to fine-tuned state of the art interaction control methods we achieve reduced tracking error and improved disturbance rejection.
arXiv Detail & Related papers (2022-06-28T16:28:59Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Deluca -- A Differentiable Control Library: Environments, Methods, and
Benchmarking [52.44199258132215]
We present an open-source library of differentiable physics and robotics environments.
The library features several popular environments, including classical control settings from OpenAI Gym.
We give several use-cases of new scientific results obtained using the library.
arXiv Detail & Related papers (2021-02-19T15:06:47Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
We present a framework that synthesizes robust controllers for a quadruped robot.
A high-level controller learns to choose from a set of primitives in response to changes in the environment.
A low-level controller that utilizes an established control method to robustly execute the primitives.
arXiv Detail & Related papers (2020-09-21T16:49:26Z) - Model-Reference Reinforcement Learning for Collision-Free Tracking
Control of Autonomous Surface Vehicles [1.7033108359337459]
The proposed control algorithm combines a conventional control method with reinforcement learning to enhance control accuracy and intelligence.
Thanks to reinforcement learning, the overall tracking controller is capable of compensating for model uncertainties and achieving collision avoidance.
arXiv Detail & Related papers (2020-08-17T12:15:15Z) - Model-Reference Reinforcement Learning Control of Autonomous Surface
Vehicles with Uncertainties [1.7033108359337459]
The proposed control combines a conventional control method with deep reinforcement learning.
With the reinforcement learning, we can directly learn a control law to compensate for modeling uncertainties.
In comparison with traditional deep reinforcement learning methods, our proposed learning-based control can provide stability guarantees and better sample efficiency.
arXiv Detail & Related papers (2020-03-30T22:02:13Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.