Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing
- URL: http://arxiv.org/abs/2206.14122v1
- Date: Tue, 28 Jun 2022 16:28:59 GMT
- Title: Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing
- Authors: Weixuan Zhang, Lionel Ott, Marco Tognon, Roland Siegwart
- Abstract summary: We present a learning-based adaptive control strategy for aerial sliding tasks.
The proposed controller structure combines data-driven and model-based control methods.
Compared to fine-tuned state of the art interaction control methods we achieve reduced tracking error and improved disturbance rejection.
- Score: 42.27572349747162
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recent development of novel aerial vehicles capable of physically
interacting with the environment leads to new applications such as
contact-based inspection. These tasks require the robotic system to exchange
forces with partially-known environments, which may contain uncertainties
including unknown spatially-varying friction properties and discontinuous
variations of the surface geometry. Finding a control strategy that is robust
against these environmental uncertainties remains an open challenge. This paper
presents a learning-based adaptive control strategy for aerial sliding tasks.
In particular, the gains of a standard impedance controller are adjusted in
real-time by a policy based on the current control signals, proprioceptive
measurements, and tactile sensing. This policy is trained in simulation with
simplified actuator dynamics in a student-teacher learning setup. The
real-world performance of the proposed approach is verified using a tilt-arm
omnidirectional flying vehicle. The proposed controller structure combines
data-driven and model-based control methods, enabling our approach to
successfully transfer directly and without adaptation from simulation to the
real platform. Compared to fine-tuned state of the art interaction control
methods we achieve reduced tracking error and improved disturbance rejection.
Related papers
- Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
This paper introduces a Non-linear Model Predictive Control (NMPC) framework for the DJI Matrice 100.
The framework supports various trajectory types and employs a penalty-based cost function for control accuracy in tight maneuvers.
arXiv Detail & Related papers (2024-10-03T17:50:19Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - Conformal Policy Learning for Sensorimotor Control Under Distribution
Shifts [61.929388479847525]
This paper focuses on the problem of detecting and reacting to changes in the distribution of a sensorimotor controller's observables.
The key idea is the design of switching policies that can take conformal quantiles as input.
We show how to design such policies by using conformal quantiles to switch between base policies with different characteristics.
arXiv Detail & Related papers (2023-11-02T17:59:30Z) - Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance [1.099532646524593]
This paper presents a novel approach, merging the Maximum Entropy Deep Reinforcement Learning framework with a classic model-based control architecture, to formulate an adaptive controller.
Within this framework, we introduce a Sim-to-Real transfer strategy comprising the following components: a bio-inspired experience replay mechanism, an enhanced domain randomisation technique, and an evaluation protocol executed on a physical platform.
Our experimental assessments demonstrate that this method effectively learns proficient policies from suboptimal simulated models of the AUV, resulting in control performance 3 times higher when transferred to a real-world vehicle.
arXiv Detail & Related papers (2023-10-17T08:46:56Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT) is a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world.
DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields.
It can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baseline.
arXiv Detail & Related papers (2023-10-13T12:22:31Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to discrepancy between source and target environments.
We propose a novel model-free actor-critic algorithm to learn robust policies without modeling the disturbance in advance.
Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
arXiv Detail & Related papers (2021-12-20T13:13:05Z) - Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust [0.2770822269241973]
Navigation problems under unknown varying conditions are among the most important and well-studied problems in the control field.
Recent model-free adaptive control methods aim at removing this dependency by learning the physical characteristics of the plant directly from sensor feedback.
We propose a conceptually simple learning-based approach composed of a full state feedback controller, tuned robustly by a deep reinforcement learning framework.
arXiv Detail & Related papers (2021-01-29T10:13:56Z) - Model-Reference Reinforcement Learning for Collision-Free Tracking
Control of Autonomous Surface Vehicles [1.7033108359337459]
The proposed control algorithm combines a conventional control method with reinforcement learning to enhance control accuracy and intelligence.
Thanks to reinforcement learning, the overall tracking controller is capable of compensating for model uncertainties and achieving collision avoidance.
arXiv Detail & Related papers (2020-08-17T12:15:15Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
We propose a novel approach for learning predictive models of force profiles required for contact-rich tasks.
The approach combines an anomaly detection based on Bidirectional Gated Recurrent Units (Bi-GRU) and an adaptive force/impedance controller.
arXiv Detail & Related papers (2020-05-01T05:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.