論文の概要: Contextualized Rewriting for Text Summarization
- arxiv url: http://arxiv.org/abs/2102.00385v1
- Date: Sun, 31 Jan 2021 05:35:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 16:50:21.346247
- Title: Contextualized Rewriting for Text Summarization
- Title(参考訳): テキスト要約のためのコンテキスト付き書き換え
- Authors: Guangsheng Bao and Yue Zhang
- Abstract要約: グループアライメントを伴うSeq2seq問題として書き換える。
その結果,本手法は非テキスト化書き換えシステムよりも大幅に優れていることがわかった。
- 参考スコア(独自算出の注目度): 10.666547385992935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extractive summarization suffers from irrelevance, redundancy and
incoherence. Existing work shows that abstractive rewriting for extractive
summaries can improve the conciseness and readability. These rewriting systems
consider extracted summaries as the only input, which is relatively focused but
can lose important background knowledge. In this paper, we investigate
contextualized rewriting, which ingests the entire original document. We
formalize contextualized rewriting as a seq2seq problem with group alignments,
introducing group tag as a solution to model the alignments, identifying
extracted summaries through content-based addressing. Results show that our
approach significantly outperforms non-contextualized rewriting systems without
requiring reinforcement learning, achieving strong improvements on ROUGE scores
upon multiple extractive summarizers.
- Abstract(参考訳): 抽出的要約は、非関連性、冗長性、および非整合性に苦しむ。
既存の研究によると、抽出要約のための抽象的な書き換えは簡潔さと可読性を向上させることができる。
これらの書き直しシステムは、抽出された要約を、比較的焦点を絞ったが重要な背景知識を失う唯一の入力とみなしている。
本稿では,原文書全体を包含する文脈的書き換えについて検討する。
グループアライメントによる seq2seq 問題として文脈的書き換えを形式化し、グループタグをアライメントをモデル化するソリューションとして導入し、コンテンツベースのアドレッシングによって抽出された要約を特定します。
その結果,本手法は強化学習を必要とせず,非文脈的書き直しシステムを大きく上回り,複数抽出要約によるルージュスコアの大幅な改善を実現した。
関連論文リスト
- Thesis: Document Summarization with applications to Keyword extraction and Image Retrieval [0.0]
意見要約のための部分モジュラ関数の集合を提案する。
意見要約は、その中に要約と感情検出のタスクが組み込まれている。
我々の関数は、文書の感情と要約の感情と良いROUGEスコアとの相関関係が良いような要約を生成する。
論文 参考訳(メタデータ) (2024-05-20T21:27:18Z) - Factually Consistent Summarization via Reinforcement Learning with
Textual Entailment Feedback [57.816210168909286]
我々は,この問題を抽象的な要約システムで解くために,テキストエンテーメントモデルの最近の進歩を活用している。
我々は、事実整合性を最適化するために、レファレンスフリーのテキストエンターメント報酬を用いた強化学習を用いる。
自動測定と人的評価の両結果から,提案手法は生成した要約の忠実さ,サリエンス,簡潔さを著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-05-31T21:04:04Z) - SummIt: Iterative Text Summarization via ChatGPT [12.966825834765814]
本稿では,ChatGPTのような大規模言語モデルに基づく反復的なテキスト要約フレームワークSummItを提案する。
我々のフレームワークは、自己評価とフィードバックによって生成された要約を反復的に洗練することを可能にする。
また, 繰り返し改良の有効性を検証し, 過補正の潜在的な問題を特定するために, 人間の評価を行う。
論文 参考訳(メタデータ) (2023-05-24T07:40:06Z) - Text Summarization with Oracle Expectation [88.39032981994535]
抽出要約は、文書の中で最も重要な文を識別し、連結することによって要約を生成する。
ほとんどの要約データセットは、文書文が要約に値するかどうかを示す金のラベルを持っていない。
本稿では,ソフトな予測に基づく文ラベルを生成する,シンプルで効果的なラベル付けアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:10:08Z) - A General Contextualized Rewriting Framework for Text Summarization [15.311467109946571]
抽出文は比較的焦点が当てられているが、背景知識や談話の文脈が失われる可能性がある。
コンテントベースのアドレッシングによって抽出文を識別し、グループタグアライメントを施したSeq2seqとしてコンテクスト化された書き直しを形式化する。
その結果,本手法は強化学習を必要とせず,非コンテクスチュアライズされた書き換えシステムよりも優れていた。
論文 参考訳(メタデータ) (2022-07-13T03:55:57Z) - Abstractive Query Focused Summarization with Query-Free Resources [60.468323530248945]
本稿では,汎用的な要約リソースのみを利用して抽象的なqfsシステムを構築する問題を考える。
本稿では,要約とクエリのための新しい統一表現からなるMasked ROUGE回帰フレームワークであるMargeを提案する。
最小限の監視から学習したにもかかわらず,遠隔管理環境において最先端の結果が得られた。
論文 参考訳(メタデータ) (2020-12-29T14:39:35Z) - Relation Clustering in Narrative Knowledge Graphs [71.98234178455398]
原文内の関係文は(SBERTと)埋め込み、意味論的に類似した関係をまとめるためにクラスタ化される。
予備的なテストでは、そのようなクラスタリングが類似した関係を検知し、半教師付きアプローチのための貴重な前処理を提供することが示されている。
論文 参考訳(メタデータ) (2020-11-27T10:43:04Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
論文 参考訳(メタデータ) (2020-10-06T02:51:02Z) - SueNes: A Weakly Supervised Approach to Evaluating Single-Document
Summarization via Negative Sampling [25.299937353444854]
本研究は,参照要約の存在を伴わない,弱教師付き要約評価手法に対する概念実証研究である。
既存の要約データセットの大量データは、文書と破損した参照要約とのペアリングによってトレーニングのために変換される。
論文 参考訳(メタデータ) (2020-05-13T15:40:13Z) - Extractive Summarization as Text Matching [123.09816729675838]
本稿では,ニューラル抽出要約システムの構築方法に関するパラダイムシフトを作成する。
抽出した要約タスクを意味テキストマッチング問題として定式化する。
我々はCNN/DailyMailの最先端抽出結果を新しいレベル(ROUGE-1の44.41)に推し進めた。
論文 参考訳(メタデータ) (2020-04-19T08:27:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。