論文の概要: Fine-tuning Handwriting Recognition systems with Temporal Dropout
- arxiv url: http://arxiv.org/abs/2102.00511v1
- Date: Sun, 31 Jan 2021 18:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 16:54:16.790585
- Title: Fine-tuning Handwriting Recognition systems with Temporal Dropout
- Title(参考訳): 時間的ドロップアウトによる微調整手書き認識システム
- Authors: Edgard Chammas, Chafic Mokbel
- Abstract要約: 本稿では、リカレントニューラルネットワーク(RNN)に基づく手書き文字認識システムのための新しい手法を提案する。
シーケンスをモデル化するシステムの能力を改善するために,シーケンス内のランダムな位置にある情報をドロップする手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel method to fine-tune handwriting recognition
systems based on Recurrent Neural Networks (RNN). Long Short-Term Memory (LSTM)
networks are good at modeling long sequences but they tend to overfit over
time. To improve the system's ability to model sequences, we propose to drop
information at random positions in the sequence. We call our approach Temporal
Dropout (TD). We apply TD at the image level as well to internal network
representation. We show that TD improves the results on two different datasets.
Our method outperforms previous state-of-the-art on Rodrigo dataset.
- Abstract(参考訳): 本論文では,Recurrent Neural Networks(RNN)に基づく手書き認識システムの微調整手法を提案する。
LSTM(Long Short-Term Memory)ネットワークは長いシーケンスのモデリングに長けているが、時間とともに過度に適合する傾向がある。
シーケンスをモデル化するシステムの能力を向上させるために,シーケンス内のランダムな位置の情報をドロップする手法を提案する。
われわれのアプローチをTD(Temporal Dropout)と呼ぶ。
内部ネットワーク表現にも画像レベルでTDを適用します。
TDは2つの異なるデータセットで結果を改善する。
提案手法は,従来のロドリゴデータセットよりも優れていた。
関連論文リスト
- Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
我々は,変分オートエンコーダ(VAE)を利用して,ノード時系列の特徴とグラフ構造の両方に欠落する値を予測するPoGeVonという新しいモデルを設計する。
実験の結果,ベースライン上でのモデルの有効性が示された。
論文 参考訳(メタデータ) (2023-05-29T21:11:34Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
ニューラルインシシット辞書(NID)を学習することで、データとトレーニング効率の両方を達成する汎用INRフレームワークを提案する。
我々のNIDは、所望の関数空間にまたがるように調整された座標ベースのImpworksのグループを組み立てる。
実験の結果,NIDは最大98%の入力データで2次元画像や3次元シーンの再現を2桁高速化できることがわかった。
論文 参考訳(メタデータ) (2022-07-08T05:07:19Z) - Classification of Long Sequential Data using Circular Dilated
Convolutional Neural Networks [10.014879130837912]
循環拡張畳み込みニューラルネットワーク(CDIL-CNN)と呼ばれる対称型マルチスケールアーキテクチャを提案する。
本モデルでは,全ての位置で分類ロジットを付与し,簡単なアンサンブル学習を適用し,より良い判断を下すことができる。
論文 参考訳(メタデータ) (2022-01-06T16:58:59Z) - Keypoint Message Passing for Video-based Person Re-Identification [106.41022426556776]
ビデオベースの人物再識別(re-ID)は、異なるカメラで捉えた人々のビデオスニペットをマッチングすることを目的とした、視覚監視システムにおいて重要な技術である。
既存の手法は主に畳み込みニューラルネットワーク(CNN)に基づいており、そのビルディングブロックは近隣のピクセルを一度に処理するか、あるいは3D畳み込みが時間情報のモデル化に使用される場合、人の動きによって生じるミスアライメントの問題に悩まされる。
本稿では,人間指向グラフ法を用いて,通常の畳み込みの限界を克服することを提案する。具体的には,人手指のキーポイントに位置する特徴を抽出し,時空間グラフとして接続する。
論文 参考訳(メタデータ) (2021-11-16T08:01:16Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - DTW-Merge: A Novel Data Augmentation Technique for Time Series
Classification [6.091096843566857]
本稿では,動的時間ワーピングに基づく時系列の新たなデータ拡張手法を提案する。
提案されたアプローチを最近紹介したResNetは、2018年のUCR時系列分類アーカイブで結果の改善を明らかにしている。
論文 参考訳(メタデータ) (2021-03-01T16:40:47Z) - Have convolutions already made recurrence obsolete for unconstrained
handwritten text recognition ? [3.0969191504482247]
制約のない手書きテキスト認識は、ディープニューラルネットワークにとって重要な課題です。
リカレントネットワークとLong Short-Term Memory Networkはこの分野で最先端の性能を達成した。
RIMESデータセットを用いたオフライン手書き認識タスクにおける異なるアーキテクチャに関する実験的研究を提案する。
論文 参考訳(メタデータ) (2020-12-09T10:15:24Z) - Time Series Data Augmentation for Neural Networks by Time Warping with a
Discriminative Teacher [17.20906062729132]
本稿では,ガイド付きワープと呼ばれる新しい時系列データ拡張を提案する。
ガイド付きワープは動的時間ワープ(DTW)と形状DTWの要素アライメント特性を利用する。
我々は、深部畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を用いて、2015 UCR Time Series Archiveにある85のデータセットすべてに対する手法の評価を行った。
論文 参考訳(メタデータ) (2020-04-19T06:33:44Z) - Lipreading using Temporal Convolutional Networks [57.41253104365274]
現在の単語認識モデルは,残差ネットワークと双方向Gated Recurrent Unit層で構成されている。
このモデルの限界に対処し、その性能をさらに向上させる変更を提案する。
提案モデルでは,これらのデータセットにおいてそれぞれ1.2%と3.2%の絶対的な改善が得られた。
論文 参考訳(メタデータ) (2020-01-23T17:49:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。