Multi-loop atomic Sagnac interferometry
- URL: http://arxiv.org/abs/2102.00991v1
- Date: Mon, 1 Feb 2021 17:17:21 GMT
- Title: Multi-loop atomic Sagnac interferometry
- Authors: Christian Schubert, Sven Abend, Matthias Gersemann, Martina Gebbe,
Dennis Schlippert, Peter Berg, Ernst M. Rasel
- Abstract summary: We present a concept for a multi-loop atom interferometer with a scalable area formed by light pulses.
Our method will offer sensitivities as high as $2cdot10-11$ rad/s at 1 s in combination with the respective long-term stability as required for Earth rotation monitoring.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sensitivity of light and matter-wave interferometers to rotations is
based on the Sagnac effect and increases with the area enclosed by the
interferometer. In the case of light, the latter can be enlarged by forming
multiple fibre loops, whereas the equivalent for matter-wave interferometers
remains an experimental challenge. We present a concept for a multi-loop atom
interferometer with a scalable area formed by light pulses. Our method will
offer sensitivities as high as $2\cdot10^{-11}$ rad/s at 1 s in combination
with the respective long-term stability as required for Earth rotation
monitoring.
Related papers
- Super-resolution imaging based on active optical intensity interferometry [14.452089688779049]
In contrast to amplitude (phase) interferometry, intensity interferometry exploits the quantum nature of light to measure the photon bunching effect in thermal light.
In outdoor environments, we image two-dimension millimeter-level targets over 1.36 kilometers at a resolution of 14 times the diffraction limit of a single telescope.
arXiv Detail & Related papers (2024-04-24T06:51:01Z) - Phase sensitivity of spatially broadband high-gain SU(1,1)
interferometers [0.0]
We present a theoretical description of spatially multimode SU (1,1) interferometers operating at low and high parametric gains.
Our approach is based on a step-by-step solution of a system of integro-differential equations for each nonlinear interaction region.
We investigate plane-wave and Gaussian pumping and show that for any parametric gain, there exists a region of phases for which the phase sensitivity surpasses the standard shot-noise scaling.
arXiv Detail & Related papers (2023-07-04T13:51:31Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Closed-Loop Dual-Atom-Interferometer Inertial Sensor with Continuous Cold Atomic Beams [1.3452520136741124]
Sensor operates with double-loop atom interferometers, which share the same Raman light pulses in a spatially separated Mach-Zehnder configuration.
Acceleration and the rotation rate are decoupled and simultaneously measured by the sum and difference of dual atom-interferometer signals.
arXiv Detail & Related papers (2022-10-26T07:10:29Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z) - Tailoring multi-loop atom interferometers with adjustable momentum
transfer [0.0]
Multi-loop matter-wave interferometers are essential in quantum sensing to measure the derivatives of physical quantities in time or space.
imperfections of the matter-wave mirrors create spurious paths that scramble the signal of interest.
Here we demonstrate a method of adjustable momentum transfer that prevents the recombination of the spurious paths in a double-loop atom interferometer aimed at measuring rotation rates.
arXiv Detail & Related papers (2020-06-15T12:46:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.