論文の概要: Deep Evolutionary Learning for Molecular Design
- arxiv url: http://arxiv.org/abs/2102.01011v1
- Date: Mon, 28 Dec 2020 03:15:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-24 18:03:10.358701
- Title: Deep Evolutionary Learning for Molecular Design
- Title(参考訳): 分子設計のための深層進化学習
- Authors: Yifeng Li, Hsu Kiang Ooi, Alain Tchagang
- Abstract要約: 分子設計のためのフラグメントに基づく深層生成モデルと多対象進化計算を融合した深層進化学習プロセスを提案する。
本手法は,(1) 構造空間ではなく, 生成モデルの潜在空間における進化的操作を可能とし, 次世代の分子構造を創出する。
- 参考スコア(独自算出の注目度): 1.8047694351309207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a deep evolutionary learning (DEL) process that
integrates fragment-based deep generative model and multi-objective
evolutionary computation for molecular design. Our approach enables (1)
evolutionary operations in the latent space of the generative model, rather
than the structural space, to generate novel promising molecular structures for
the next evolutionary generation, and (2) generative model fine-tuning using
newly generated high-quality samples. Thus, DEL implements a data-model
co-evolution concept which improves both sample population and generative model
learning. Experiments on two public datasets indicate that sample population
obtained by DEL exhibits improved property distributions, and dominates samples
generated by multi-objective Bayesian optimization algorithms.
- Abstract(参考訳): 本稿では,分子設計のための断片ベース深層生成モデルと多目的進化計算を統合した深層進化学習(DEL)プロセスを提案する。
本手法により,(1)構造空間ではなく潜在空間における進化操作により,新しい分子構造を創り出すことができ,(2)新たに生成した高品質試料を用いた生成モデルの微調整が可能となった。
このように、DELはサンプル人口と生成モデル学習の両方を改善するデータモデル共進化の概念を実装している。
2つの公開データセットに関する実験は、delによって得られたサンプル集団が特性分布を改善し、多目的ベイズ最適化アルゴリズムによって生成されたサンプルを支配していることを示している。
関連論文リスト
- Heuristically Adaptive Diffusion-Model Evolutionary Strategy [1.8299322342860518]
拡散モデル(Diffusion Models)は、生成モデルにおいて重要な進歩を示す。
本研究は,拡散モデルと進化的アルゴリズムの基本的な関係を明らかにする。
我々のフレームワークは、進化的最適化プロセスにおいて、柔軟性、精度、制御性を高めたアルゴリズム上の大きな遷移を示す。
論文 参考訳(メタデータ) (2024-11-20T16:06:28Z) - Controlling the Fidelity and Diversity of Deep Generative Models via Pseudo Density [70.14884528360199]
本稿では, GAN や拡散モデルなどのバイアス深層生成モデルへのアプローチを導入し, 忠実度の向上や多様性の向上を図ったデータ生成手法を提案する。
提案手法では, 擬似密度という, 個人サンプルの新たな測定基準を用いて, トレーニングとデータ生成の分布を操作する。
論文 参考訳(メタデータ) (2024-07-11T16:46:04Z) - Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation [0.0]
分子生成(LEOMol)における遅延進化最適化という革新的なアプローチを提案する。
LEOMolは最適化分子の効率的な生成のための生成モデリングフレームワークである。
提案手法は,従来の最先端モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-02T13:42:21Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z) - EvoVGM: A Deep Variational Generative Model for Evolutionary Parameter
Estimation [0.0]
本研究では,局所生物学的進化パラメータの真後部を共同で近似した深部変分ベイズ生成モデルを提案する。
本研究では,いくつかの進化シナリオと実際のウイルス配列アライメントをシミュレートした合成配列アライメントにおける手法の一貫性と有効性を示す。
論文 参考訳(メタデータ) (2022-05-25T20:08:10Z) - Multi-Objective Latent Space Optimization of Generative Molecular Design Models [3.1996400013865656]
生成分子設計(GMD)の性能を大幅に向上させる多目的潜在空間最適化(LSO)法を提案する。
複数分子特性を共同最適化するための多目的GMD LSO法は, GMDの性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-01T15:12:05Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。