論文の概要: Multi-Objective Latent Space Optimization of Generative Molecular Design Models
- arxiv url: http://arxiv.org/abs/2203.00526v3
- Date: Mon, 22 Jul 2024 01:26:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 06:25:22.889169
- Title: Multi-Objective Latent Space Optimization of Generative Molecular Design Models
- Title(参考訳): 生成分子設計モデルの多目的潜在空間最適化
- Authors: A N M Nafiz Abeer, Nathan Urban, M Ryan Weil, Francis J. Alexander, Byung-Jun Yoon,
- Abstract要約: 生成分子設計(GMD)の性能を大幅に向上させる多目的潜在空間最適化(LSO)法を提案する。
複数分子特性を共同最適化するための多目的GMD LSO法は, GMDの性能を著しく向上させることができることを示す。
- 参考スコア(独自算出の注目度): 3.1996400013865656
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Molecular design based on generative models, such as variational autoencoders (VAEs), has become increasingly popular in recent years due to its efficiency for exploring high-dimensional molecular space to identify molecules with desired properties. While the efficacy of the initial model strongly depends on the training data, the sampling efficiency of the model for suggesting novel molecules with enhanced properties can be further enhanced via latent space optimization. In this paper, we propose a multi-objective latent space optimization (LSO) method that can significantly enhance the performance of generative molecular design (GMD). The proposed method adopts an iterative weighted retraining approach, where the respective weights of the molecules in the training data are determined by their Pareto efficiency. We demonstrate that our multi-objective GMD LSO method can significantly improve the performance of GMD for jointly optimizing multiple molecular properties.
- Abstract(参考訳): 可変オートエンコーダ(VAEs)のような生成モデルに基づく分子設計は、高次元分子空間を探索して所望の特性を持つ分子を同定する効率性から、近年人気が高まっている。
初期モデルの有効性はトレーニングデータに強く依存するが、改良された特性を持つ新規分子を提案するモデルのサンプリング効率は、潜在空間最適化によってさらに向上することができる。
本稿では、生成分子設計(GMD)の性能を大幅に向上させる多目的潜在空間最適化(LSO)手法を提案する。
提案手法では, トレーニングデータの各分子の重み付けがPareto効率によって決定される反復重み付け再学習手法を採用する。
複数分子特性を共同最適化するための多目的GMD LSO法により, GMDの性能を著しく向上させることができることを示す。
関連論文リスト
- Pathway-Guided Optimization of Deep Generative Molecular Design Models for Cancer Therapy [1.8210200978176423]
ジャンクションツリー変動オートエンコーダ (JTVAE) は効率的な生成モデルであることが示されている。
薬物様小分子の治療効果を評価する薬理力学モデルが, 有効潜時空間最適化にどのように組み込まれているかを示す。
論文 参考訳(メタデータ) (2024-11-05T19:20:30Z) - Conditional Latent Space Molecular Scaffold Optimization for Accelerated Molecular Design [17.175846006359674]
初期入力と類似性を保ちながら分子を戦略的に修飾するための条件付き遅延空間分子スカフォールド最適化(CLaSMO)を導入する。
我々のLSBO設定は、最適化のサンプル効率を向上し、我々の修正アプローチは、実世界の適用可能性の高い分子を得るのに役立ちます。
我々はまた、化学の専門家がCLaSMOをHuman-in-the-Loop設定で適用できるオープンソースのWebアプリケーションも提供する。
論文 参考訳(メタデータ) (2024-11-03T03:17:38Z) - Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [77.50732023411811]
変換器を用いた拡散言語モデル(TransDLM)を用いたテキスト誘導多目的分子最適化手法を提案する。
TransDLMは標準化された化学命名法を分子の意味表現として利用し、プロパティ要求をテキスト記述に暗黙的に埋め込む。
提案手法は, 分子構造類似性を最適化し, ベンチマークデータセットの化学的特性を向上するための最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-10-17T14:30:27Z) - XMOL: Explainable Multi-property Optimization of Molecules [2.320539066224081]
複数の分子特性を同時に最適化するために,分子のマルチプロパティ最適化(XMOL)を提案する。
我々のアプローチは、最先端の幾何学的拡散モデルに基づいており、それらをマルチプロパティ最適化に拡張している。
最適化プロセス全体を通して解釈的および説明可能な技術を統合する。
論文 参考訳(メタデータ) (2024-09-12T06:35:04Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
大規模言語モデル(LLM)は、数ショットのインコンテキスト学習(ICL)において、優れたパフォーマンスを示している。
マルチショットICLで利用可能な実験データの不足を克服する,新しい半教師付き学習手法を開発した。
示すように、この新しい手法は、既存の分子設計のためのICL法を大幅に改善し、科学者にとってアクセスしやすく、使いやすくする。
論文 参考訳(メタデータ) (2024-07-26T21:10:50Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed
Molecular Generation [23.618366377098614]
本稿では,分子潜在表現ベクトルを最適化した遅延空間におけるコスト効率のよい進化戦略を提案する。
我々は、潜伏空間と観測空間をマッピングするために、事前訓練された分子生成モデルを採用する。
提案手法といくつかの高度な手法を比較した複数の最適化タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-11-30T11:02:18Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。