Emergent Unfairness in Algorithmic Fairness-Accuracy Trade-Off Research
- URL: http://arxiv.org/abs/2102.01203v3
- Date: Tue, 7 Sep 2021 20:02:05 GMT
- Title: Emergent Unfairness in Algorithmic Fairness-Accuracy Trade-Off Research
- Authors: A. Feder Cooper, Ellen Abrams
- Abstract summary: We argue that such assumptions, which are often left implicit and unexamined, lead to inconsistent conclusions.
While the intended goal of this work may be to improve the fairness of machine learning models, these unexamined, implicit assumptions can in fact result in emergent unfairness.
- Score: 2.6397379133308214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Across machine learning (ML) sub-disciplines, researchers make explicit
mathematical assumptions in order to facilitate proof-writing. We note that,
specifically in the area of fairness-accuracy trade-off optimization
scholarship, similar attention is not paid to the normative assumptions that
ground this approach. Such assumptions presume that 1) accuracy and fairness
are in inherent opposition to one another, 2) strict notions of mathematical
equality can adequately model fairness, 3) it is possible to measure the
accuracy and fairness of decisions independent from historical context, and 4)
collecting more data on marginalized individuals is a reasonable solution to
mitigate the effects of the trade-off. We argue that such assumptions, which
are often left implicit and unexamined, lead to inconsistent conclusions: While
the intended goal of this work may be to improve the fairness of machine
learning models, these unexamined, implicit assumptions can in fact result in
emergent unfairness. We conclude by suggesting a concrete path forward toward a
potential resolution.
Related papers
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
We analyze the tension between fairness and accuracy from a causal lens for the first time.
We show that enforcing a causal constraint often reduces the disparity between demographic groups.
We introduce a new neural approach for causally-constrained fair learning.
arXiv Detail & Related papers (2024-05-24T11:19:52Z) - The Unfairness of $\varepsilon$-Fairness [0.0]
We show that if the concept of $varepsilon$-fairness is employed, it can possibly lead to outcomes that are maximally unfair in the real-world context.
We illustrate our findings with two real-world examples: college admissions and credit risk assessment.
arXiv Detail & Related papers (2024-05-15T14:13:35Z) - A Theoretical Approach to Characterize the Accuracy-Fairness Trade-off
Pareto Frontier [42.18013955576355]
The accuracy-fairness trade-off has been frequently observed in the literature of fair machine learning.
This work seeks to develop a theoretical framework by characterizing the shape of the accuracy-fairness trade-off.
The proposed research enables an in-depth understanding of the accuracy-fairness trade-off, pushing current fair machine-learning research to a new frontier.
arXiv Detail & Related papers (2023-10-19T14:35:26Z) - Understanding Fairness Surrogate Functions in Algorithmic Fairness [21.555040357521907]
We show that there is a surrogate-fairness gap between the fairness definition and the fairness surrogate function.
We elaborate a novel and general algorithm called Balanced Surrogate, which iteratively reduces the gap to mitigate unfairness.
arXiv Detail & Related papers (2023-10-17T12:40:53Z) - Reconciling Predictive and Statistical Parity: A Causal Approach [68.59381759875734]
We propose a new causal decomposition formula for the fairness measures associated with predictive parity.
We show that the notions of statistical and predictive parity are not really mutually exclusive, but complementary and spanning a spectrum of fairness notions.
arXiv Detail & Related papers (2023-06-08T09:23:22Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Beyond Impossibility: Balancing Sufficiency, Separation and Accuracy [27.744055920557024]
Tension between satisfying textitsufficiency and textitseparation
We propose an objective that aims to balance textitsufficiency and textitseparation measures.
We show promising results, where better trade-offs are achieved compared to existing alternatives.
arXiv Detail & Related papers (2022-05-24T19:14:21Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
Existing debiasing methods, such as adversarial training and removing protected information from representations, have been shown to reduce bias.
We propose two novel training objectives which directly optimise for the widely-used criterion of it equal opportunity, and show that they are effective in reducing bias while maintaining high performance over two classification tasks.
arXiv Detail & Related papers (2022-05-05T01:57:58Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
Adversarial training is a common approach for bias mitigation in natural language processing.
We propose an augmented discriminator for adversarial training, which takes the target class as input to create richer features.
arXiv Detail & Related papers (2022-03-12T02:22:58Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.