論文の概要: Doubly Robust Thompson Sampling for linear payoffs
- arxiv url: http://arxiv.org/abs/2102.01229v1
- Date: Mon, 1 Feb 2021 23:31:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-03 16:33:05.873808
- Title: Doubly Robust Thompson Sampling for linear payoffs
- Title(参考訳): 線形ペイオフのための二重ロバストトンプソンサンプリング
- Authors: Wonyoung Kim, Gi-soo Kim, Myunghee Cho Paik
- Abstract要約: 我々は、Douubly Robust (DR) Thompson Sampling (TS) と呼ばれる新しいマルチアームコンテキスト帯域幅アルゴリズムを提案する。
提案したアルゴリズムは、コンテキストの次元が$d$である場合、$sqrtd$の係数でTSのバウンダリを改善する。
提案手法の利点は、選択されるか選択されないかの全てのコンテキストデータを使用し、不飽和武器の技術的定義を回避できることである。
- 参考スコア(独自算出の注目度): 14.70672236127518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A challenging aspect of the bandit problem is that a stochastic reward is
observed only for the chosen arm and the rewards of other arms remain missing.
Since the arm choice depends on the past context and reward pairs, the contexts
of chosen arms suffer from correlation and render the analysis difficult. We
propose a novel multi-armed contextual bandit algorithm called Doubly Robust
(DR) Thompson Sampling (TS) that applies the DR technique used in missing data
literature to TS. The proposed algorithm improves the bound of TS by a factor
of $\sqrt{d}$, where $d$ is the dimension of the context. A benefit of the
proposed method is that it uses all the context data, chosen or not chosen,
thus allowing to circumvent the technical definition of unsaturated arms used
in theoretical analysis of TS. Empirical studies show the advantage of the
proposed algorithm over TS.
- Abstract(参考訳): バンドイット問題における挑戦的な側面は、選択された腕のみに確率的な報酬が観察され、他の腕の報酬が失われることである。
アームの選択は過去のコンテキストと報酬ペアに依存するため、選択されたアームのコンテキストは相関に苦しめられ、分析が困難になる。
本論文では,データ文献の欠落に用いるDR手法をTSに応用した,Dubly Robust (DR) Thompson Sampling (TS) という新しいマルチアームコンテキストバンディットアルゴリズムを提案する。
提案されたアルゴリズムは、$d$ が文脈の次元である$\sqrt{d}$ の係数によって ts の境界を改善する。
提案手法の利点は,ts の理論的解析に使用される不飽和アームの技術的定義を回避できるため,選択または選択しないすべてのコンテキストデータを使用することである。
経験的研究はTSよりも提案されたアルゴリズムの利点を示す。
関連論文リスト
- Feel-Good Thompson Sampling for Contextual Dueling Bandits [49.450050682705026]
FGTS.CDBという名前のトンプソンサンプリングアルゴリズムを提案する。
われわれのアルゴリズムの核心は、デュエルバンディットに適した新しいFeel-Good探索用語である。
我々のアルゴリズムは最小限の誤差、すなわち $tildemathcalO(dsqrt T)$, $d$ はモデル次元、$T$ は時間水平線である。
論文 参考訳(メタデータ) (2024-04-09T04:45:18Z) - LC-Tsallis-INF: Generalized Best-of-Both-Worlds Linear Contextual Bandits [38.41164102066483]
本研究では、独立かつ同一に分散したコンテキストを持つ線形文脈帯域問題について考察する。
提案アルゴリズムは、Tsallisエントロピーを持つFollow-The-Regularized-Leaderに基づいており、$alpha$-textual-Con (LC)-Tsallis-INFと呼ばれている。
論文 参考訳(メタデータ) (2024-03-05T18:59:47Z) - Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems [61.85150061213987]
一般化線形モデル (GLM) フレームワークを用いて, citelu2021low で提案した一般化低ランク行列帯域問題について検討する。
既存のアルゴリズムの計算不可能性と理論的制約を克服するため,まずG-ESTTフレームワークを提案する。
G-ESTT は $tildeO(sqrt(d_1+d_2)3/2Mr3/2T)$ bound of regret を達成でき、G-ESTS は $tildeO を達成できることを示す。
論文 参考訳(メタデータ) (2024-01-14T14:14:19Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
本稿では, 一般化線形モデル(GLM)から, デュエルアームのバイナリ比較を生成するコンテキストデュエルバンド問題について検討する。
本稿では,SupLinUCB型アルゴリズムを提案する。このアルゴリズムは,計算効率と分散を意識したリセットバウンド$tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$を提案する。
我々の後悔は、比較が決定論的である場合の直感的な期待と自然に一致し、アルゴリズムは$tilde O(d)$ regretにのみ悩まされる。
論文 参考訳(メタデータ) (2023-10-02T08:15:52Z) - Double Doubly Robust Thompson Sampling for Generalized Linear Contextual
Bandits [8.508198765617198]
一般化線形報酬に$tildeO(sqrtkappa-1 phi T)$ regret over $T$ roundsを提案する。
また、確率的マージン条件下では、$O(kappa-1 phi log (NT) log T)$ regret bound for $N$ arms も提供する。
論文 参考訳(メタデータ) (2022-09-15T00:20:38Z) - Squeeze All: Novel Estimator and Self-Normalized Bound for Linear
Contextual Bandits [18.971564419292893]
我々は、$O(sqrtdTlog T)$ regret boundで、$d$は文脈の次元、$T$は時間地平線であるような線形文脈的帯域幅アルゴリズムを提案する。
提案アルゴリズムは,探索を明示的ランダム化により埋め込んだ新しい推定器を備える。
論文 参考訳(メタデータ) (2022-06-11T02:43:17Z) - Breaking the $\sqrt{T}$ Barrier: Instance-Independent Logarithmic Regret
in Stochastic Contextual Linear Bandits [10.127456032874978]
線形ペイオフを伴う文脈的包帯に対する対数的後悔(多元的後悔)を証明した。
コンテキストは、$sqrtT$から$polylog(T)$への後悔を減らすのに役立ちます。
論文 参考訳(メタデータ) (2022-05-19T23:41:46Z) - Stochastic Contextual Dueling Bandits under Linear Stochastic
Transitivity Models [25.336599480692122]
我々は,コンテキスト情報を用いた決闘バンディット問題における後悔の最小化タスクについて検討する。
本稿では,フィードバックプロセスの模倣に基づく計算効率のよいアルゴリズムである$texttCoLSTIM$を提案する。
本実験は,CoLSTモデルの特殊事例に対する最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-09T17:44:19Z) - Thresholded Lasso Bandit [70.17389393497125]
Thresholded Lasso banditは、報酬関数を定義するベクトルとスパースサポートを推定するアルゴリズムである。
一般には $mathcalO( log d + sqrtT )$ や $mathcalO( log d + sqrtT )$ としてスケールする非漸近的後悔の上界を確立する。
論文 参考訳(メタデータ) (2020-10-22T19:14:37Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
制約付き文脈線形帯域設定について検討し、エージェントの目標は一連のポリシーを作成することである。
楽観的悲観的線形帯域(OPLB)と呼ばれる,この問題に対する高信頼束縛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-17T22:32:19Z) - Taking a hint: How to leverage loss predictors in contextual bandits? [63.546913998407405]
我々は,損失予測の助けを借りて,文脈的包帯における学習を研究する。
最適な後悔は$mathcalO(minsqrtT, sqrtmathcalETfrac13)$である。
論文 参考訳(メタデータ) (2020-03-04T07:36:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。