論文の概要: Time Adaptive Gaussian Model
- arxiv url: http://arxiv.org/abs/2102.01238v1
- Date: Tue, 2 Feb 2021 00:28:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-04 00:53:48.175769
- Title: Time Adaptive Gaussian Model
- Title(参考訳): 時間適応ガウスモデル
- Authors: Federico Cieca, Veronica Tozzo
- Abstract要約: 我々のモデルは、時間的グラフィカルモデルの推論のための最先端手法の一般化である。
時間内にデータポイントをクラスタリングすることでパターン認識を行い、観察された変数間の確率的(そしておそらく因果関係)関係を見つける。
- 参考スコア(独自算出の注目度): 0.913755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series analysis is becoming an integral part of data
analysis pipelines. Understanding the individual time point connections between
covariates as well as how these connections change in time is non-trivial. To
this aim, we propose a novel method that leverages on Hidden Markov Models and
Gaussian Graphical Models -- Time Adaptive Gaussian Model (TAGM). Our model is
a generalization of state-of-the-art methods for the inference of temporal
graphical models, its formulation leverages on both aspects of these models
providing better results than current methods. In particular,it performs
pattern recognition by clustering data points in time; and, it finds
probabilistic (and possibly causal) relationships among the observed variables.
Compared to current methods for temporal network inference, it reduces the
basic assumptions while still showing good inference performances.
- Abstract(参考訳): 多変量時系列分析は、データ分析パイプラインの不可欠な部分になりつつある。
コ変数間の個々のタイムポイント接続と、これらの接続が時間内でどのように変化するかを理解することは簡単ではない。
そこで本研究では,隠れマルコフモデルとガウスグラフィックモデル-時間適応ガウスモデル(TAGM)を活用した新しい手法を提案する。
本モデルは時間的グラフィカルモデルの推論のための最先端手法の一般化であり,その定式化は,現在の手法よりも優れた結果を提供するモデルの両側面を活用している。
特に、時間内にデータポイントをクラスタリングすることでパターン認識を行い、観察された変数間の確率的(そしておそらく因果関係)の関係を見出す。
時間的ネットワーク推論の現在の方法と比較して、良い推論性能を示しながら基本的な仮定を減らします。
関連論文リスト
- ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - A Pattern Discovery Approach to Multivariate Time Series Forecasting [27.130141538089152]
モデル複雑性は時系列の長さとともに指数関数的に増加するので、最先端のディープラーニング手法はフルタイムのモデルの構築に失敗する。
本稿では,多種多様な時系列パターンを自動的にキャプチャできる新しいパターン探索手法を提案する。
また,学習可能な相関行列を提案し,複数の時系列間の相関関係をモデル化する。
論文 参考訳(メタデータ) (2022-12-20T14:54:04Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
本稿では,高次元時系列に対する新しいスパース無限次VARモデルを提案する。
このモデルによって得られたVARMA型力学の時間的・横断的な構造は別々に解釈できる。
統計的効率と解釈可能性の向上は、時間的情報をほとんど失わずに達成できる。
論文 参考訳(メタデータ) (2022-09-02T17:14:24Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Analysis and modeling to forecast in time series: a systematic review [0.0]
本稿では,時系列解析とモデリングに特化した最先端の手法とモデルについて,最終予測をめざして検討する。
本総説は, 時系列分解, 定常試験, モデリング, 予測を網羅し, 全プロセスフローを包括的に把握することを目的としている。
論文 参考訳(メタデータ) (2021-03-31T23:48:46Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - The temporal overfitting problem with applications in wind power curve
modeling [8.057262184815636]
本稿では,時間的過適合問題に対処する新しい手法を提案する。
本稿では,風力エネルギーのパワー曲線モデリングを対象とする。
論文 参考訳(メタデータ) (2020-12-02T17:39:57Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [55.28436972267793]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Pattern Similarity-based Machine Learning Methods for Mid-term Load
Forecasting: A Comparative Study [0.0]
パターン類似性に基づく年次電力需要予測手法について検討した。
モデルの不可欠な部分は、時系列シーケンスのパターンを用いた時系列表現である。
近接モデル,ファジィ近傍モデル,カーネル回帰モデル,一般回帰ニューラルネットワークの4つのモデルを考える。
論文 参考訳(メタデータ) (2020-03-03T12:14:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。