論文の概要: Mining Feature Relationships in Data
- arxiv url: http://arxiv.org/abs/2102.01355v1
- Date: Tue, 2 Feb 2021 07:06:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-03 16:56:46.336922
- Title: Mining Feature Relationships in Data
- Title(参考訳): データにおけるマイニング特徴関係
- Authors: Andrew Lensen
- Abstract要約: 特徴関係マイニング(FRM)は、データの連続的または分類的特徴間の象徴的関係を自動的に発見する遺伝的プログラミング手法である。
提案手法は,特徴間の関係を明確に発見することを目的とした,最初の象徴的アプローチである。
実世界の様々なデータセットに対する実証テストにより、提案手法は高品質で単純な特徴関係を見つけることができることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: When faced with a new dataset, most practitioners begin by performing
exploratory data analysis to discover interesting patterns and characteristics
within data. Techniques such as association rule mining are commonly applied to
uncover relationships between features (attributes) of the data. However,
association rules are primarily designed for use on binary or categorical data,
due to their use of rule-based machine learning. A large proportion of
real-world data is continuous in nature, and discretisation of such data leads
to inaccurate and less informative association rules. In this paper, we propose
an alternative approach called feature relationship mining (FRM), which uses a
genetic programming approach to automatically discover symbolic relationships
between continuous or categorical features in data. To the best of our
knowledge, our proposed approach is the first such symbolic approach with the
goal of explicitly discovering relationships between features. Empirical
testing on a variety of real-world datasets shows the proposed method is able
to find high-quality, simple feature relationships which can be easily
interpreted and which provide clear and non-trivial insight into data.
- Abstract(参考訳): 新しいデータセットに直面したとき、ほとんどの実践者はデータ内の興味深いパターンや特徴を発見するために探索的データ分析を行うことから始める。
関連ルールマイニングのような手法は、データの特徴(属性)間の関係を明らかにするために一般的に用いられる。
しかし、アソシエーションルールはルールベースの機械学習を使用するため、主にバイナリデータやカテゴリデータでの使用のために設計されている。
現実世界のデータの大部分は本質的に連続的であり、そのようなデータの離散化は不正確で情報の少ない関連ルールをもたらす。
本稿では,データ中の連続的・分類的特徴間の象徴的関係を自動的に発見する遺伝的プログラミング手法を用いて,特徴関係マイニング(FRM)という代替手法を提案する。
我々の知る限りでは、我々の提案したアプローチは、特徴間の関係を明確に発見することを目的とした最初の象徴的なアプローチである。
実世界のさまざまなデータセットにおける経験的テスト 提案手法は、容易に解釈でき、データに対する明確かつ非自明な洞察を提供する高品質でシンプルな特徴関係を見つけることができる。
関連論文リスト
- Benchmarking the Fidelity and Utility of Synthetic Relational Data [1.024113475677323]
我々は、関係データ合成、共通ベンチマークデータセット、および合成データの忠実性と有用性を測定するためのアプローチに関する関連研究についてレビューする。
ベストプラクティスと、新しい堅牢な検出アプローチをベンチマークツールに組み合わせて、6つのメソッドを比較します。
実用面では、モデル予測性能と特徴量の両方において、実データと合成データの適度な相関が観察されるのが一般的である。
論文 参考訳(メタデータ) (2024-10-04T13:23:45Z) - Semantic-Enhanced Relational Metric Learning for Recommender Systems [27.330164862413184]
近年,知識グラフの翻訳機構に触発された推薦コミュニティにおいて,計量学習手法が注目されている。
本稿では,推薦システムにおける問題に対処するためのセマンティック拡張メトリックラーニングフレームワークを提案する。
具体的には、まず、豊富な特徴とパーソナライズされたユーザー嗜好を含む対象レビューから意味信号を抽出する。
次に、抽出した意味信号を利用して、新しい回帰モデルを設計し、元の関係に基づくトレーニングプロセスの識別能力を向上させる。
論文 参考訳(メタデータ) (2024-06-07T11:54:50Z) - Jointprop: Joint Semi-supervised Learning for Entity and Relation
Extraction with Heterogeneous Graph-based Propagation [13.418617500641401]
共同半教師付きエンティティと関係抽出のための不均一グラフに基づく伝搬フレームワークであるJointpropを提案する。
我々は、エンティティと関係候補から統一されたスパンベースのヘテロジニアスグラフを構築し、信頼度スコアに基づいてクラスラベルを伝搬する。
我々はNERおよびREタスクにおける最先端の半教師付きアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-25T09:07:04Z) - GenSyn: A Multi-stage Framework for Generating Synthetic Microdata using
Macro Data Sources [21.32471030724983]
人口を特徴付ける個人レベルのデータ(マイクロデータ)は多くの現実世界の問題を研究するのに不可欠である。
本研究では,高分解能データの抽出方法として合成データ生成について検討する。
論文 参考訳(メタデータ) (2022-12-08T01:22:12Z) - Can I see an Example? Active Learning the Long Tail of Attributes and
Relations [64.50739983632006]
視覚シーンの属性や関係を問う,新たな逐次能動学習フレームワークを提案する。
従来のアクティブな学習手法では、特定の例のラベルを求めるが、エージェントが特定のカテゴリからサンプルを求めることができるように、このフレーミングを反転させる。
このフレーミングを用いて、データ分布の尾からサンプルを求めるアクティブサンプリング手法を導入し、Visual Genomeの古典的アクティブラーニング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-11T19:28:19Z) - Realistic Counterfactual Explanations by Learned Relations [0.0]
本稿では,データ属性間の関係を保存した現実的対実的説明に対する新しいアプローチを提案する。
モデルはドメイン知識のない変分自動エンコーダによって関係を直接学習し、それに従って潜伏空間を乱すことを学習する。
論文 参考訳(メタデータ) (2022-02-15T12:33:51Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - Type-augmented Relation Prediction in Knowledge Graphs [65.88395564516115]
本稿では,タイプ情報とインスタンスレベルの情報の両方を関係予測に適用するタイプ拡張関係予測(TaRP)手法を提案する。
提案手法は,4つのベンチマークデータセット上での最先端手法よりも高い性能を実現する。
論文 参考訳(メタデータ) (2020-09-16T21:14:18Z) - Discovering Nonlinear Relations with Minimum Predictive Information
Regularization [67.7764810514585]
本稿では,時系列から方向関係を推定する最小限の情報正規化手法を提案する。
本手法は, 合成データセットの非線形関係を学習するための他の手法よりも優れている。
論文 参考訳(メタデータ) (2020-01-07T04:28:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。