An Improved Baseline for Sentence-level Relation Extraction
- URL: http://arxiv.org/abs/2102.01373v1
- Date: Tue, 2 Feb 2021 07:57:06 GMT
- Title: An Improved Baseline for Sentence-level Relation Extraction
- Authors: Wenxuan Zhou, Muhao Chen
- Abstract summary: Sentence-level relation extraction (RE) aims at identifying the relationship between two entities in a sentence.
In this paper, we revisit two aspects of RE models that are not thoroughly studied, namely entity representation and NA instance prediction.
- Score: 17.50856935207308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentence-level relation extraction (RE) aims at identifying the relationship
between two entities in a sentence. Many efforts have been devoted to this
problem, while the best performing methods are still far behind human
performance. In this paper, we revisit two aspects of RE models that are not
thoroughly studied, namely entity representation and NA instance prediction.
Our improved baseline model, incorporated with entity representations with type
markers and confidence-based classification for enhanced NA instance detection,
achieves an F1 of 75.0% on TACRED, significantly outperforms previous SOTA
methods.
Related papers
- Language Model Preference Evaluation with Multiple Weak Evaluators [78.53743237977677]
GED (Preference Graph Ensemble and Denoise) is a novel approach that leverages multiple model-based evaluators to construct preference graphs.
We show that GED outperforms baseline methods in model ranking, response selection, and model alignment tasks.
arXiv Detail & Related papers (2024-10-14T01:57:25Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Differentiable Retrieval Augmentation via Generative Language Modeling
for E-commerce Query Intent Classification [8.59563091603226]
We propose Differentiable Retrieval Augmentation via Generative lANguage modeling(Dragan) to address this problem by a novel differentiable reformulation.
We demonstrate the effectiveness of our proposed method on a challenging NLP task in e-commerce search, namely query intent classification.
arXiv Detail & Related papers (2023-08-18T05:05:35Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Continual Contrastive Finetuning Improves Low-Resource Relation
Extraction [34.76128090845668]
Relation extraction has been particularly challenging in low-resource scenarios and domains.
Recent literature has tackled low-resource RE by self-supervised learning.
We propose to pretrain and finetune the RE model using consistent objectives of contrastive learning.
arXiv Detail & Related papers (2022-12-21T07:30:22Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
We show that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes.
We use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy.
We also construct new benchmarks which better respect the task of detecting semantic novelty.
arXiv Detail & Related papers (2021-10-12T17:58:59Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval [11.38022203865326]
SPLADE model provides highly sparse representations and competitive results with respect to state-of-the-art dense and sparse approaches.
We modify the pooling mechanism, benchmark a model solely based on document expansion, and introduce models trained with distillation.
Overall, SPLADE is considerably improved with more than $9$% gains on NDCG@10 on TREC DL 2019, leading to state-of-the-art results on the BEIR benchmark.
arXiv Detail & Related papers (2021-09-21T10:43:42Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - GPT-too: A language-model-first approach for AMR-to-text generation [22.65728041544785]
We propose an approach that combines a strong pre-trained language model with cycle consistency-based re-scoring.
Despite the simplicity of the approach, our experimental results show these models outperform all previous techniques.
arXiv Detail & Related papers (2020-05-18T22:50:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.