Predicting the Time Until a Vehicle Changes the Lane Using LSTM-based
Recurrent Neural Networks
- URL: http://arxiv.org/abs/2102.01431v2
- Date: Wed, 3 Feb 2021 09:07:53 GMT
- Title: Predicting the Time Until a Vehicle Changes the Lane Using LSTM-based
Recurrent Neural Networks
- Authors: Florian Wirthm\"uller, Marvin Klimke, Julian Schlechtriemen, Jochen
Hipp and Manfred Reichert
- Abstract summary: This paper deals with the development of a system that accurately predicts the time to the next lane change of surrounding vehicles on highways.
An evaluation based on a large real-world data set shows that our approach is able to make reliable predictions, even in the most challenging situations.
- Score: 0.5399800035598186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To plan safe and comfortable trajectories for automated vehicles on highways,
accurate predictions of traffic situations are needed. So far, a lot of
research effort has been spent on detecting lane change maneuvers rather than
on estimating the point in time a lane change actually happens. In practice,
however, this temporal information might be even more useful. This paper deals
with the development of a system that accurately predicts the time to the next
lane change of surrounding vehicles on highways using long short-term
memory-based recurrent neural networks. An extensive evaluation based on a
large real-world data set shows that our approach is able to make reliable
predictions, even in the most challenging situations, with a root mean squared
error around 0.7 seconds. Already 3.5 seconds prior to lane changes the
predictions become highly accurate, showing a median error of less than 0.25
seconds. In summary, this article forms a fundamental step towards downstreamed
highly accurate position predictions.
Related papers
- Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory.
This work instead relies on having knowledge of the current state and intended direction to make predictions for multiple vehicles at intersections.
Message passing of this information between the vehicles provides each one of them a more holistic overview of the environment.
arXiv Detail & Related papers (2023-01-06T15:13:23Z) - Multi-modal Transformer Path Prediction for Autonomous Vehicle [15.729029675380083]
We propose a path prediction system named Multi-modal Transformer Path Prediction (MTPP) that aims to predict long-term future trajectory of target agents.
To achieve more accurate path prediction, the Transformer architecture is adopted in our model.
An extensive evaluation is conducted to show the efficacy of the proposed system using nuScene, a real-world trajectory forecasting dataset.
arXiv Detail & Related papers (2022-08-15T15:09:26Z) - RCLane: Relay Chain Prediction for Lane Detection [76.62424079494285]
We present a new method for lane detection based on relay chain prediction.
Our strategy allows us to establish new state-of-the-art on four major benchmarks including TuSimple, CULane, CurveLanes and LLAMAS.
arXiv Detail & Related papers (2022-07-19T16:48:39Z) - RadNet: Incident Prediction in Spatio-Temporal Road Graph Networks Using
Traffic Forecasting [2.6690664860458906]
We develop a neural model, called RadNet, which forecasts system parameters for a future timestep.
Unlike prior work, RadNet infers spatial and temporal trends in both permutations, finally combining the dense representations before forecasting.
arXiv Detail & Related papers (2022-06-11T20:06:47Z) - Predicting highway lane-changing maneuvers: A benchmark analysis of
machine and ensemble learning algorithms [0.0]
We compare different machine and ensemble learning classification techniques to the rule-based model.
We predict two types of discretionary lane-change maneuvers: Overtaking (from slow to fast lane) and fold-down.
If the rule-based model provides limited predicting accuracy, especially in case of fold-down, the data-based algorithms, devoid of modeling bias, allow significant prediction improvements.
arXiv Detail & Related papers (2022-04-20T22:55:59Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - A Lane-Changing Prediction Method Based on Temporal Convolution Network [36.84793673877468]
Lane-changing is an important driving behavior and unreasonable lane changes can result in potentially dangerous traffic collisions.
This study proposes a temporal convolutional network (TCN) to predict the long-term lane-changing trajectory and behavior.
arXiv Detail & Related papers (2020-11-01T07:33:10Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
In this paper, we propose the Road Network Metric Learning framework for Estimated Time of Arrival (ETA)
It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors.
We show that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.
arXiv Detail & Related papers (2020-06-24T04:45:14Z) - Long-Term Prediction of Lane Change Maneuver Through a Multilayer
Perceptron [5.267336573374459]
We propose a longer-term (510 seconds) lane change prediction model without any lateral or angle information.
Three prediction models are introduced, including a logistic regression model, a multilayer perceptron (MLP) model, and a recurrent neural network (RNN) model.
Evaluation results show that the developed prediction model is able to capture 75% of real lane change maneuvers with an average advanced prediction time of 8.05 seconds.
arXiv Detail & Related papers (2020-06-23T05:32:40Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.