Time Series Classification via Topological Data Analysis
- URL: http://arxiv.org/abs/2102.01956v1
- Date: Wed, 3 Feb 2021 09:09:05 GMT
- Title: Time Series Classification via Topological Data Analysis
- Authors: Alperen Karan, Atabey Kaygun
- Abstract summary: We perform binary and ternary classification tasks on two public datasets.
We accomplish our goal by using persistent homology to engineer stable topological features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop topological data analysis methods for
classification tasks on univariate time series. As an application we perform
binary and ternary classification tasks on two public datasets that consist of
physiological signals collected under stress and non-stress conditions. We
accomplish our goal by using persistent homology to engineer stable topological
features after we use a time delay embedding of the signals and perform a
subwindowing instead of using windows of fixed length. The combination of
methods we use can be applied to any univariate time series and in this
application allows us to reduce noise and use long window sizes without
incurring an extra computational cost. We then use machine learning models on
the features we algorithmically engineered to obtain higher accuracies with
fewer features.
Related papers
- SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
We show that learning based methods can, even based on synthetic data, significantly outperform GCC-PHAT on novel real world data.
We provide our trained model, SONNET, which is runnable in real-time and works on novel data out of the box for many real data applications.
arXiv Detail & Related papers (2024-11-20T10:23:21Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
Time series data is characterized by its intrinsic long and short-range dependencies.
We introduce a novel Time Series Lightweight Network (TSLANet) as a universal convolutional model for diverse time series tasks.
Our experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2024-04-12T13:41:29Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Multivariate Time Series Classification: A Deep Learning Approach [1.0742675209112622]
This paper investigates different methods and various neural network architectures applicable in the time series classification domain.
Data is obtained from a fleet of gas sensors that measure and track quantities such as oxygen and sound.
With the help of this data, we can detect events such as occupancy in a specific environment.
arXiv Detail & Related papers (2023-07-05T12:50:48Z) - Learning Signal Temporal Logic through Neural Network for Interpretable
Classification [13.829082181692872]
We propose an explainable neural-symbolic framework for the classification of time-series behaviors.
We demonstrate the computational efficiency, compactness, and interpretability of the proposed method through driving scenarios and naval surveillance case studies.
arXiv Detail & Related papers (2022-10-04T21:11:54Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - Benchmarking Deep Learning Interpretability in Time Series Predictions [41.13847656750174]
Saliency methods are used extensively to highlight the importance of input features in model predictions.
We set out to extensively compare the performance of various saliency-based interpretability methods across diverse neural architectures.
arXiv Detail & Related papers (2020-10-26T22:07:53Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.