論文の概要: Superhypergraph Neural Networks and Plithogenic Graph Neural Networks: Theoretical Foundations
- arxiv url: http://arxiv.org/abs/2412.01176v1
- Date: Mon, 02 Dec 2024 06:33:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:25.850532
- Title: Superhypergraph Neural Networks and Plithogenic Graph Neural Networks: Theoretical Foundations
- Title(参考訳): 超ハイパーグラフニューラルネットワークと多元性グラフニューラルネットワーク:理論的基礎
- Authors: Takaaki Fujita,
- Abstract要約: ハイパーグラフは、エッジが複数のノードを接続できるようにすることによって伝統的なグラフを拡張し、一方スーパーハイパーグラフは、この概念をさらに複雑な関係を表すように一般化する。
確立されたフレームワークであるグラフニューラルネットワーク(GNN)が先日,ハイパーグラフニューラルネットワーク(HGNN)に拡張された。
本稿では,超HyperGraph Neural Networks(SHGNNs)とPlithogenic Graph Neural Networks(Plithogenic Graph Neural Networks)の理論的基盤を確立する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Hypergraphs extend traditional graphs by allowing edges to connect multiple nodes, while superhypergraphs further generalize this concept to represent even more complex relationships. Neural networks, inspired by biological systems, are widely used for tasks such as pattern recognition, data classification, and prediction. Graph Neural Networks (GNNs), a well-established framework, have recently been extended to Hypergraph Neural Networks (HGNNs), with their properties and applications being actively studied. The Plithogenic Graph framework enhances graph representations by integrating multi-valued attributes, as well as membership and contradiction functions, enabling the detailed modeling of complex relationships. In the context of handling uncertainty, concepts such as Fuzzy Graphs and Neutrosophic Graphs have gained prominence. It is well established that Plithogenic Graphs serve as a generalization of both Fuzzy Graphs and Neutrosophic Graphs. Furthermore, the Fuzzy Graph Neural Network has been proposed and is an active area of research. This paper establishes the theoretical foundation for the development of SuperHyperGraph Neural Networks (SHGNNs) and Plithogenic Graph Neural Networks, expanding the applicability of neural networks to these advanced graph structures. While mathematical generalizations and proofs are presented, future computational experiments are anticipated.
- Abstract(参考訳): ハイパーグラフは、エッジが複数のノードを接続できるようにすることによって伝統的なグラフを拡張し、一方スーパーハイパーグラフは、この概念をさらに複雑な関係を表すように一般化する。
ニューラルネットワークは生物学的システムにインスパイアされ、パターン認識、データ分類、予測といったタスクに広く利用されている。
確立されたフレームワークであるグラフニューラルネットワーク(GNN)は、最近Hypergraph Neural Networks(HGNN)に拡張され、その特性と応用が活発に研究されている。
Plithogenic Graphフレームワークは、多値属性とメンバシップと矛盾関数を統合することでグラフ表現を強化し、複雑な関係の詳細なモデリングを可能にする。
不確実性を扱う文脈では、ファジィグラフやニュートロソフィックグラフといった概念が注目されている。
Plithogenic Graphs は Fuzzy Graphs と Neutrosophic Graphs の両方の一般化の役割を果たすことがよく確認されている。
さらに、ファジィグラフニューラルネットワークが提案され、研究の活発な領域となっている。
本稿では,超HyperGraph Neural Networks(SHGNNs)とPlithogenic Graph Neural Networks(Plithogenic Graph Neural Networks)の理論的基盤を確立し,これらの高度なグラフ構造へのニューラルネットワークの適用性を拡大する。
数学的一般化と証明が提示される一方で、将来の計算実験が期待されている。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Knowledge Enhanced Graph Neural Networks for Graph Completion [0.0]
Knowledge Enhanced Graph Neural Networks (KeGNN)は、グラフ補完のためのニューラルシンボリックなフレームワークである。
KeGNNは、知識強化レイヤを積み重ねた基盤としてグラフニューラルネットワークで構成されている。
我々はKeGNNを、最先端のグラフニューラルネットワーク、グラフ畳み込みネットワーク、グラフ注意ネットワークの2つと組み合わせてインスタンス化する。
論文 参考訳(メタデータ) (2023-03-27T07:53:43Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Theory of Graph Neural Networks: Representation and Learning [44.02161831977037]
グラフニューラルネットワーク(GNN)は、ノードやグラフ、ポイントの設定を予測するための一般的な学習モデルになっている。
本稿では、広く使われているメッセージパッシングGNNと高次GNNの近似と学習特性に関する、新たな理論結果の選択について要約する。
論文 参考訳(メタデータ) (2022-04-16T02:08:50Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Capsule Graph Neural Networks with EM Routing [8.632437524560133]
本稿では、EMルーティング機構(CapsGNNEM)を用いて、高品質なグラフ埋め込みを生成する新しいCapsule Graph Neural Networkを提案する。
多くの実世界のグラフデータセットに対する実験結果から、提案したCapsGNNEMはグラフ分類タスクにおいて9つの最先端モデルより優れていることが示された。
論文 参考訳(メタデータ) (2021-10-18T06:23:37Z) - Learning Graph Representations [0.0]
グラフニューラルネットワーク(GNN)は、大きな動的グラフデータセットに対する洞察を得るための効率的な方法である。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダとソーシャル・テンポラル・グラフ・ニューラルネットワークについて論じる。
論文 参考訳(メタデータ) (2021-02-03T12:07:55Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。