論文の概要: A Survey on Graph Representation Learning Methods
- arxiv url: http://arxiv.org/abs/2204.01855v1
- Date: Mon, 4 Apr 2022 21:18:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-07 00:07:33.743215
- Title: A Survey on Graph Representation Learning Methods
- Title(参考訳): グラフ表現学習法に関する調査研究
- Authors: Shima Khoshraftar, Aijun An
- Abstract要約: グラフ表現学習の目的は、大きなグラフの構造と特徴を正確に捉えるグラフ表現ベクトルを生成することである。
グラフ表現学習の最も一般的な2つのカテゴリはグラフニューラルネット(GNN)とグラフニューラルネット(GNN)ベースの手法を使わずにグラフ埋め込み手法である。
- 参考スコア(独自算出の注目度): 7.081604594416337
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Graphs representation learning has been a very active research area in recent
years. The goal of graph representation learning is to generate graph
representation vectors that capture the structure and features of large graphs
accurately. This is especially important because the quality of the graph
representation vectors will affect the performance of these vectors in
downstream tasks such as node classification, link prediction and anomaly
detection. Many techniques are proposed for generating effective graph
representation vectors. Two of the most prevalent categories of graph
representation learning are graph embedding methods without using graph neural
nets (GNN), which we denote as non-GNN based graph embedding methods, and graph
neural nets (GNN) based methods. Non-GNN graph embedding methods are based on
techniques such as random walks, temporal point processes and neural network
learning methods. GNN-based methods, on the other hand, are the application of
deep learning on graph data. In this survey, we provide an overview of these
two categories and cover the current state-of-the-art methods for both static
and dynamic graphs. Finally, we explore some open and ongoing research
directions for future work.
- Abstract(参考訳): 近年,グラフ表現学習は非常に活発な研究領域となっている。
グラフ表現学習の目標は、大きなグラフの構造と特徴を正確に捉えるグラフ表現ベクトルを生成することである。
グラフ表現ベクトルの品質は、ノード分類、リンク予測、異常検出などの下流タスクにおけるこれらのベクトルの性能に影響を与えるため、これは特に重要である。
有効なグラフ表現ベクトルを生成するための多くの手法が提案されている。
グラフ表現学習で最も普及している2つのカテゴリは、グラフニューラルネット(gnn)を使用しないグラフ埋め込み手法(gnn)と、グラフニューラルネット(gnn)ベースの方法である。
非GNNグラフ埋め込み法は、ランダムウォーク、時間点過程、ニューラルネットワーク学習法などの手法に基づいている。
一方、GNNベースの手法は、グラフデータに対するディープラーニングの応用である。
本稿では,これら2つのカテゴリを概観し,静的グラフと動的グラフの両方の最先端手法について述べる。
最後に、今後の研究に向けたオープンで継続的な研究の方向性を探る。
関連論文リスト
- Knowledge Probing for Graph Representation Learning [12.960185655357495]
グラフ表現学習において,グラフ学習手法のファミリーが異なるレベルの知識を符号化したかどうかを調査・解釈するための新しいグラフ探索フレームワーク(GraphProbe)を提案する。
グラフの固有の性質に基づいて,異なる視点からグラフ表現学習過程を体系的に研究する3つのプローブを設計する。
本研究では、ランダムウォークに基づく9つの代表的なグラフ学習手法、基本グラフニューラルネットワーク、自己教師付きグラフ手法を用いて、詳細な評価ベンチマークを構築し、ノード分類、リンク予測、グラフ分類のための6つのベンチマークデータセットでそれらを探索する。
論文 参考訳(メタデータ) (2024-08-07T16:27:45Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
グラフレベルのニューラルネットワーク(GLNN、ディープラーニングベースのグラフレベルの学習法)は、高次元データのモデリングにおいて優れているため、魅力的である。
本稿では,深層ニューラルネットワーク,グラフニューラルネットワーク,グラフプール上でのGLNNを網羅する系統分類法を提案する。
論文 参考訳(メタデータ) (2022-05-31T06:16:55Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Learning Graph Representations [0.0]
グラフニューラルネットワーク(GNN)は、大きな動的グラフデータセットに対する洞察を得るための効率的な方法である。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダとソーシャル・テンポラル・グラフ・ニューラルネットワークについて論じる。
論文 参考訳(メタデータ) (2021-02-03T12:07:55Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Lifelong Graph Learning [6.282881904019272]
連続グラフ学習問題を正規グラフ学習問題に変換することにより、グラフ学習と生涯学習を橋渡しする。
機能グラフネットワーク(FGN)は,ウェアラブルデバイスを用いた生涯の人間行動認識と特徴マッチングという2つのアプリケーションにおいて,優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-09-01T18:21:34Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。