論文の概要: Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot
Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2102.02033v1
- Date: Wed, 3 Feb 2021 12:28:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-04 17:16:16.697675
- Title: Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot
Medical Image Segmentation
- Title(参考訳): 単発医用画像分割のためのラベルなしデータの確率分布のモデル化
- Authors: Yuhang Ding, Xin Yu, Yi Yang
- Abstract要約: 我々は1ショットの脳磁気共鳴画像(MRI)画像分割のためのデータ拡張法を開発した。
提案手法は,MRI画像1枚(atlas)とラベルなし画像数枚のみを利用する。
本手法は最先端のワンショット医療セグメンテーション法より優れている。
- 参考スコア(独自算出の注目度): 40.41161371507547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing image segmentation networks mainly leverage large-scale labeled
datasets to attain high accuracy. However, labeling medical images is very
expensive since it requires sophisticated expert knowledge. Thus, it is more
desirable to employ only a few labeled data in pursuing high segmentation
performance. In this paper, we develop a data augmentation method for one-shot
brain magnetic resonance imaging (MRI) image segmentation which exploits only
one labeled MRI image (named atlas) and a few unlabeled images. In particular,
we propose to learn the probability distributions of deformations (including
shapes and intensities) of different unlabeled MRI images with respect to the
atlas via 3D variational autoencoders (VAEs). In this manner, our method is
able to exploit the learned distributions of image deformations to generate new
authentic brain MRI images, and the number of generated samples will be
sufficient to train a deep segmentation network. Furthermore, we introduce a
new standard segmentation benchmark to evaluate the generalization performance
of a segmentation network through a cross-dataset setting (collected from
different sources). Extensive experiments demonstrate that our method
outperforms the state-of-the-art one-shot medical segmentation methods. Our
code has been released at
https://github.com/dyh127/Modeling-the-Probabilistic-Distribution-of-Unlabeled-Data.
- Abstract(参考訳): 既存の画像セグメンテーションネットワークは、主に大規模ラベル付きデータセットを活用して高い精度を実現する。
しかし、専門知識を必要とするため、医用画像のラベル付けは非常に高価である。
したがって、高いセグメンテーション性能の追求において、ラベル付きデータのみを用いる方が望ましい。
本稿では,1つのラベル付きMRI画像(アトラス)と数個のラベルなし画像のみを利用する,ワンショット脳MRI画像セグメント化のためのデータ拡張手法を開発する。
特に,3次元変分オートエンコーダ(VAE)を用いて,アトラスに対して異なるラベル付きMRI画像の変形(形状や強度を含む)の確率分布を学習することを提案する。
この方法では, 画像変形の学習分布を活用し, 新たな脳mri画像を生成することが可能であり, 生成されたサンプルの数が, ディープセグメンテーションネットワークを訓練するのに十分である。
さらに、セグメンテーションネットワークの一般化性能を評価するための新しい標準セグメンテーションベンチマークを、クロスデータセット設定(異なるソースから収集)を通じて導入する。
広汎な実験により,本手法は最先端のワンショット医療セグメンテーション法より優れていることが示された。
私たちのコードはhttps://github.com/dyh127/Modeling-the-Probabilistic-Distribution-of-Unlabeled-Dataでリリースされました。
関連論文リスト
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
未承認のプライベートデータ上での大規模なイメージセグメンテーションモデルのトレーニングに関して、プライバシーに関する懸念が高まっている。
我々は、学習不可能な例の概念を利用して、学習不可能なノイズを原画像に生成し、付加することにより、モデルトレーニングに使用不能な画像を作成する。
6つのメインストリームイメージセグメンテーションタスク、10つの広く使われているデータセット、7つの異なるネットワークアーキテクチャでUnSegの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-13T16:34:46Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Semi-Supervised Domain Generalization for Cardiac Magnetic Resonance
Image Segmentation with High Quality Pseudo Labels [8.283424744148258]
半教師型医療セグメント化のための領域一般化手法を提案する。
本研究の主な目的は,各種領域を用いた極端なMRI解析による擬似ラベルの品質向上である。
本手法は呼吸運動の異なる心臓磁気共鳴画像の正確なセグメンテーション結果を連続的に生成する。
論文 参考訳(メタデータ) (2022-09-30T12:57:41Z) - Joint Modeling of Image and Label Statistics for Enhancing Model
Generalizability of Medical Image Segmentation [14.106339318764372]
本稿では,画像統計とラベル統計を共同でモデル化する深層学習に基づくベイジアンフレームワークを提案する。
我々は,これらの変数の輪郭,基底,ラベルを含む後続分布を推定する変分ベイズ的枠組みを開発した。
クロスシーケンス心電図のセグメント化作業の結果から,本手法はモデル一般化のための新しい手法の確立を図った。
論文 参考訳(メタデータ) (2022-06-09T08:31:14Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
医用画像のセグメンテーションにおいて、教師付きディープネットワークの成功は、豊富なラベル付きデータを必要とするコストが伴う。
本稿では,ボリューム画像分割ペアを合成可能なデータ拡張のための,新しいボリューム自己教師型学習法を提案する。
我々の研究の中心的信条は、ワンショット生成学習と自己指導型学習戦略の併用による恩恵を受けている。
論文 参考訳(メタデータ) (2021-10-05T15:28:42Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
医用画像セグメンテーションのためのニューラルネットワークのトレーニングのための逆データ拡張手法を提案する。
このモデルでは,MR画像における共通の種類のアーチファクトによって生じる強度不均一性,すなわちバイアス場をモデル化する。
このような手法により,モデルの一般化と堅牢性の向上が図られ,低データシナリオにおける大幅な改善が期待できる。
論文 参考訳(メタデータ) (2020-06-23T20:43:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。