An efficient optimization based microstructure reconstruction approach
with multiple loss functions
- URL: http://arxiv.org/abs/2102.02407v1
- Date: Thu, 4 Feb 2021 04:33:17 GMT
- Title: An efficient optimization based microstructure reconstruction approach
with multiple loss functions
- Authors: Anindya Bhaduri, Ashwini Gupta, Audrey Olivier, Lori Graham-Brady
- Abstract summary: microstructure reconstruction involves digital generation of microstructures that match key statistics and characteristics of a (set of) target microstructure(s)
In this paper, we integrate statistical descriptors as well as feature maps from a pre-trained deep neural network into an overall loss function for an optimization based reconstruction procedure.
A numerical example for the microstructure reconstruction of bi-phase random porous material demonstrates the efficiency of the proposed methodology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic microstructure reconstruction involves digital generation of
microstructures that match key statistics and characteristics of a (set of)
target microstructure(s). This process enables computational analyses on
ensembles of microstructures without having to perform exhaustive and costly
experimental characterizations. Statistical functions-based and deep
learning-based methods are among the stochastic microstructure reconstruction
approaches applicable to a wide range of material systems. In this paper, we
integrate statistical descriptors as well as feature maps from a pre-trained
deep neural network into an overall loss function for an optimization based
reconstruction procedure. This helps us to achieve significant computational
efficiency in reconstructing microstructures that retain the critically
important physical properties of the target microstructure. A numerical example
for the microstructure reconstruction of bi-phase random porous ceramic
material demonstrates the efficiency of the proposed methodology. We further
perform a detailed finite element analysis (FEA) of the reconstructed
microstructures to calculate effective elastic modulus, effective thermal
conductivity and effective hydraulic conductivity, in order to analyse the
algorithm's capacity to capture the variability of these material properties
with respect to those of the target microstructure. This method provides an
economic, efficient and easy-to-use approach for reconstructing random
multiphase materials in 2D which has the potential to be extended to 3D
structures.
Related papers
- Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
We present a framework for multiscale structures with spatially varying microstructural symmetry and differentiably different microstructural descriptors.
Our findings highlight the potential of integrating consistency with density-based design optimization.
arXiv Detail & Related papers (2024-08-25T14:17:43Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - A Neural Network Transformer Model for Composite Microstructure Homogenization [1.2277343096128712]
Homogenization methods, such as the Mori-Tanaka method, offer rapid homogenization for a wide range of constituent properties.
This paper illustrates a transformer neural network architecture that captures the knowledge of various microstructures.
The network predicts the history-dependent, non-linear, and homogenized stress-strain response.
arXiv Detail & Related papers (2023-04-16T19:57:52Z) - A micromechanics-based recurrent neural networks model for
path-dependent cyclic deformation of short fiber composites [0.0]
In this work, a recurrent deep neural network model is trained to predict the path-dependent elasto-plastic stress response of short fiber reinforced composites.
The model gives very accurate predictions in a computationally efficient manner when compared with independent micromechanical simulations.
arXiv Detail & Related papers (2022-09-27T12:14:15Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
This work proposes a generative adversarial network tailored towards three-dimensional microstructure generation.
The lightweight algorithm is able to learn the underlying properties of the material from a single microCT-scan without the need of explicit descriptors.
arXiv Detail & Related papers (2022-05-31T13:26:51Z) - A multi-task learning-based optimization approach for finding diverse
sets of material microstructures with desired properties and its application
to texture optimization [1.6311150636417262]
In this paper, we introduce a multi-task learning approach for material texture optimization.
The approach consists of an optimization algorithm that interacts with a machine learning model that combines multi-task learning with siamese networks.
arXiv Detail & Related papers (2021-10-27T08:25:26Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Self-supervised optimization of random material microstructures in the
small-data regime [0.0]
This paper presents a flexible, fully probabilistic formulation of such optimization problems that accounts for the uncertainty in the process-structure and structure-property linkages.
We employ a probabilistic, data-driven surrogate for the structure-property link which expedites computations and enables handling of non-differential objectives.
We demonstrate its efficacy in optimizing the mechanical and thermal properties of two-phase, random media but envision its applicability encompasses a wide variety of microstructure-sensitive design problems.
arXiv Detail & Related papers (2021-08-05T13:25:39Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
We tackle model efficiency by exploiting redundancy in the textitimplicit structure of the building blocks of convolutional neural networks.
We show how this decomposition can be applied to 2D and 3D kernels as well as the fully-connected layers.
arXiv Detail & Related papers (2020-08-06T04:38:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.