Statistical learning of structure-property relationships for transport in porous media, using hybrid AI modeling
- URL: http://arxiv.org/abs/2503.21560v1
- Date: Thu, 27 Mar 2025 14:46:40 GMT
- Title: Statistical learning of structure-property relationships for transport in porous media, using hybrid AI modeling
- Authors: Somayeh Hosseinhashemi, Philipp Rieder, Orkun Furat, Benedikt Prifling, Changlin Wu, Christoph Thon, Volker Schmidt, Carsten Schilde,
- Abstract summary: The 3D microstructure of porous media significantly impacts the resulting macroscopic properties, including effective diffusivity or permeability.<n> quantitative structure-property relationships are crucial for further optimizing the performance of porous media.<n>The present paper uses 90,000 virtually generated 3D microstructures of porous media derived from literature.<n>The paper extends these findings by applying a hybrid AI framework to this data set.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 3D microstructure of porous media, such as electrodes in lithium-ion batteries or fiber-based materials, significantly impacts the resulting macroscopic properties, including effective diffusivity or permeability. Consequently, quantitative structure-property relationships, which link structural descriptors of 3D microstructures such as porosity or geodesic tortuosity to effective transport properties, are crucial for further optimizing the performance of porous media. To overcome the limitations of 3D imaging, parametric stochastic 3D microstructure modeling is a powerful tool to generate many virtual but realistic structures at the cost of computer simulations. The present paper uses 90,000 virtually generated 3D microstructures of porous media derived from literature by systematically varying parameters of stochastic 3D microstructure models. Previously, this data set has been used to establish quantitative microstructure-property relationships. The present paper extends these findings by applying a hybrid AI framework to this data set. More precisely, symbolic regression, powered by deep neural networks, genetic algorithms, and graph attention networks, is used to derive precise and robust analytical equations. These equations model the relationships between structural descriptors and effective transport properties without requiring manual specification of the underlying functional relationship. By integrating AI with traditional computational methods, the hybrid AI framework not only generates predictive equations but also enhances conventional modeling approaches by capturing relationships influenced by specific microstructural features traditionally underrepresented. Thus, this paper significantly advances the predictive modeling capabilities in materials science, offering vital insights for designing and optimizing new materials with tailored transport properties.
Related papers
- Elucidating the Design Space of Multimodal Protein Language Models [69.3650883370033]
Multimodal protein language models (PLMs) integrate sequence and token-based structural information.
This paper systematically elucidates the design space of multimodal PLMs to overcome their limitations.
Our advancements approach finer-grained supervision, demonstrating that token-based multimodal PLMs can achieve robust structural modeling.
arXiv Detail & Related papers (2025-04-15T17:59:43Z) - Spectral Normalization and Voigt-Reuss net: A universal approach to microstructure-property forecasting with physical guarantees [0.0]
A crucial step in the design process is the rapid evaluation of effective mechanical, thermal, or, in general, elasticity properties.
The classical simulation-based approach, which uses, e.g., finite elements and FFT-based solvers, can require substantial computational resources.
We propose a novel spectral normalization scheme that a priori enforces these bounds.
arXiv Detail & Related papers (2025-04-01T12:21:57Z) - Causal Discovery from Data Assisted by Large Language Models [50.193740129296245]
It is essential to integrate experimental data with prior domain knowledge for knowledge driven discovery.<n>Here we demonstrate this approach by combining high-resolution scanning transmission electron microscopy (STEM) data with insights derived from large language models (LLMs)<n>By fine-tuning ChatGPT on domain-specific literature, we construct adjacency matrices for Directed Acyclic Graphs (DAGs) that map the causal relationships between structural, chemical, and polarization degrees of freedom in Sm-doped BiFeO3 (SmBFO)
arXiv Detail & Related papers (2025-03-18T02:14:49Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
We present a framework for multiscale structures with spatially varying microstructural symmetry and differentiably different microstructural descriptors.
Our findings highlight the potential of integrating consistency with density-based design optimization.
arXiv Detail & Related papers (2024-08-25T14:17:43Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
The dimensional extension from 2D to 3D is viewed as a highly challenging inverse problem from the current technological perspective.
A novel generative model that integrates the multiscale properties of U-net with and the generative capabilities of GAN has been proposed.
The model's accuracy is further improved by combining the image regularization loss with the Wasserstein distance loss.
arXiv Detail & Related papers (2024-02-24T13:42:34Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - A Neural Network Transformer Model for Composite Microstructure Homogenization [1.2277343096128712]
Homogenization methods, such as the Mori-Tanaka method, offer rapid homogenization for a wide range of constituent properties.
This paper illustrates a transformer neural network architecture that captures the knowledge of various microstructures.
The network predicts the history-dependent, non-linear, and homogenized stress-strain response.
arXiv Detail & Related papers (2023-04-16T19:57:52Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
This work proposes a generative adversarial network tailored towards three-dimensional microstructure generation.
The lightweight algorithm is able to learn the underlying properties of the material from a single microCT-scan without the need of explicit descriptors.
arXiv Detail & Related papers (2022-05-31T13:26:51Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - An efficient optimization based microstructure reconstruction approach
with multiple loss functions [0.0]
microstructure reconstruction involves digital generation of microstructures that match key statistics and characteristics of a (set of) target microstructure(s)
In this paper, we integrate statistical descriptors as well as feature maps from a pre-trained deep neural network into an overall loss function for an optimization based reconstruction procedure.
A numerical example for the microstructure reconstruction of bi-phase random porous material demonstrates the efficiency of the proposed methodology.
arXiv Detail & Related papers (2021-02-04T04:33:17Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.