論文の概要: Estimating 2-Sinkhorn Divergence between Gaussian Processes from
Finite-Dimensional Marginals
- arxiv url: http://arxiv.org/abs/2102.03267v1
- Date: Fri, 5 Feb 2021 16:17:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-08 21:46:46.717664
- Title: Estimating 2-Sinkhorn Divergence between Gaussian Processes from
Finite-Dimensional Marginals
- Title(参考訳): 有限次元マルジナルからのガウス過程間の2-シンクホーン分岐の推定
- Authors: Anton Mallasto
- Abstract要約: エルフガウス過程 (GP) 間の2-シンクホーンの偏差を有限次元の辺分布を用いて推定する収束性について検討する。
境界値が基底値に従ってサンプリングされた場合, ほぼ確実に発散の収束を示す。
- 参考スコア(独自算出の注目度): 4.416484585765028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: \emph{Optimal Transport} (OT) has emerged as an important computational tool
in machine learning and computer vision, providing a geometrical framework for
studying probability measures. OT unfortunately suffers from the curse of
dimensionality and requires regularization for practical computations, of which
the \emph{entropic regularization} is a popular choice, which can be
'unbiased', resulting in a \emph{Sinkhorn divergence}. In this work, we study
the convergence of estimating the 2-Sinkhorn divergence between \emph{Gaussian
processes} (GPs) using their finite-dimensional marginal distributions. We show
almost sure convergence of the divergence when the marginals are sampled
according to some base measure. Furthermore, we show that using $n$ marginals
the estimation error of the divergence scales in a dimension-free way as
$\mathcal{O}\left(\epsilon^ {-1}n^{-\frac{1}{2}}\right)$, where $\epsilon$ is
the magnitude of entropic regularization.
- Abstract(参考訳): \emph{Optimal Transport} (OT) は機械学習とコンピュータビジョンにおける重要な計算ツールとして登場し、確率測定を研究するための幾何学的枠組みを提供する。
OT は残念ながら次元の呪いに悩まされ、実用的計算には正規化が必要であり、そのために \emph{entropic regularization} は 'unbiased' となり、その結果 \emph{Sinkhorndivrgence} となる。
本研究では,その有限次元辺分布を用いて,<emph{Gaussian process} (GPs) 間の2-シンクホーンの発散を推定する収束性について検討する。
ある基準測度に従って辺点をサンプリングすると、発散のほぼ確実に収束する。
さらに、n$ を用いた場合、発散スケールの推定誤差は $\mathcal{o}\left(\epsilon^ {-1}n^{-\frac{1}{2}}\right)$ として次元フリーな方法で計算され、ここで $\epsilon$ はエントロピー正規化の大きさである。
関連論文リスト
- Convergence of Unadjusted Langevin in High Dimensions: Delocalization of Bias [13.642712817536072]
問題の次元が$d$になるにつれて、所望の誤差内で収束を保証するのに必要なイテレーションの数が増加することを示す。
私たちが取り組んだ重要な技術的課題は、収束を測定するための$W_2,ellinfty$メートル法に一段階の縮約性がないことである。
論文 参考訳(メタデータ) (2024-08-20T01:24:54Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Gaussian-Smoothed Sliced Probability Divergences [15.123608776470077]
滑らか化とスライシングが計量特性と弱位相を保存することを示す。
また、滑らかなパラメータに関して異なる発散の連続性を含む他の性質も導出する。
論文 参考訳(メタデータ) (2024-04-04T07:55:46Z) - Efficient Estimation of the Central Mean Subspace via Smoothed Gradient Outer Products [12.047053875716506]
マルチインデックスモデルに対する十分な次元削減の問題を考察する。
高速パラメトリック収束速度が$C_d cdot n-1/2$であることを示す。
論文 参考訳(メタデータ) (2023-12-24T12:28:07Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Compressed and distributed least-squares regression: convergence rates
with applications to Federated Learning [9.31522898261934]
機械学習の勾配アルゴリズムに対する圧縮の影響について検討する。
いくつかの非バイアス圧縮演算子間の収束率の差を強調した。
我々はその結果を連合学習の事例にまで拡張する。
論文 参考訳(メタデータ) (2023-08-02T18:02:00Z) - Robust computation of optimal transport by $\beta$-potential
regularization [79.24513412588745]
最適輸送(OT)は、確率分布間の差を測定する機械学習分野で広く使われているツールである。
我々は、いわゆる$beta$-divergenceに付随するベータポテンシャル項でOTを正規化することを提案する。
提案アルゴリズムで計算した輸送行列は,外乱が存在する場合でも確率分布を頑健に推定するのに役立つことを実験的に実証した。
論文 参考訳(メタデータ) (2022-12-26T18:37:28Z) - Nonparametric approximation of conditional expectation operators [0.3655021726150368]
最小の仮定の下で、$[Pf](x) := mathbbE[f(Y) mid X = x ]$ で定義される$L2$-operatorの近似について検討する。
我々は、再生されたカーネル空間上で作用するヒルベルト・シュミット作用素により、作用素ノルムにおいて$P$が任意に適切に近似できることを証明した。
論文 参考訳(メタデータ) (2020-12-23T19:06:12Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z) - Debiased Sinkhorn barycenters [110.79706180350507]
最適輸送(OT)におけるエントロピー正則化(Entropy regularization)は、機械学習におけるWassersteinメトリクスやバリセンタに対する近年の関心の原動力となっている。
このバイアスがエントロピー正則化器を定義する基準測度とどのように密接に関連しているかを示す。
両世界の長所を保ち、エントロピーを滑らかにしないシンクホーン様の高速な反復をデバイアスド・ワッサースタインのバリセンタとして提案する。
論文 参考訳(メタデータ) (2020-06-03T23:06:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。