論文の概要: Machine Learning for Electronic Design Automation: A Survey
- arxiv url: http://arxiv.org/abs/2102.03357v2
- Date: Mon, 8 Mar 2021 08:18:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-08 08:23:16.514978
- Title: Machine Learning for Electronic Design Automation: A Survey
- Title(参考訳): 電子設計自動化のための機械学習:調査
- Authors: Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang
Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, Xuefei Ning, Yuzhe
Ma, Haoyu Yang, Bei Yu, Huazhong Yang, Yu Wang
- Abstract要約: CMOS技術のダウンスケーリングにより、超大規模集積(VLSI)の設計複雑さが増大している。
機械学習(ML)の最近のブレークスルーとEDAタスクの複雑さの増大により、ESAタスクの解決にMLを組み込むことへの関心が高まっている。
- 参考スコア(独自算出の注目度): 23.803190584543863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the down-scaling of CMOS technology, the design complexity of very
large-scale integrated (VLSI) is increasing. Although the application of
machine learning (ML) techniques in electronic design automation (EDA) can
trace its history back to the 90s, the recent breakthrough of ML and the
increasing complexity of EDA tasks have aroused more interests in incorporating
ML to solve EDA tasks. In this paper, we present a comprehensive review of
existing ML for EDA studies, organized following the EDA hierarchy.
- Abstract(参考訳): CMOS技術のダウンスケーリングにより、超大規模集積(VLSI)の設計複雑さが増大している。
電子設計自動化(EDA)における機械学習(ML)技術の適用は、その歴史を90年代まで遡ることができるが、最近のMLのブレークスルーとEDAタスクの複雑さの増加により、ESAタスクの解決にMLを取り入れることへの関心が高まっている。
本稿では,EDA階層に従って編成された既存のEDA研究用MLの総合的なレビューを行う。
関連論文リスト
- A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
論文 参考訳(メタデータ) (2024-06-05T15:05:24Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
大規模言語モデル(LLM)は、文脈理解、論理推論、回答生成においてその能力を実証している。
本稿では,EDA分野におけるLLMの応用に関する系統的研究を行う。
論理合成,物理設計,マルチモーダル特徴抽出,回路のアライメントにLLMを適用することに焦点を当て,今後の研究の方向性を強調した。
論文 参考訳(メタデータ) (2023-12-28T15:09:14Z) - EDALearn: A Comprehensive RTL-to-Signoff EDA Benchmark for Democratized
and Reproducible ML for EDA Research [5.093676641214663]
我々はEDALearnを紹介した。EDALearnは、EDAの機械学習タスクに特化した、最初の包括的なオープンソースベンチマークスイートである。
このベンチマークスイートは、合成から物理実装までのエンドツーエンドのフローを示し、さまざまなステージにわたるデータ収集を強化する。
私たちの貢献はML-EDAドメインのさらなる進歩を促進することを目的としています。
論文 参考訳(メタデータ) (2023-12-04T06:51:46Z) - ChatEDA: A Large Language Model Powered Autonomous Agent for EDA [6.858976599086164]
本稿では, LLM, AutoMage, EDAツールがエグゼクタとして機能するEDA用自律エージェントChatEDAを紹介する。
ChatEDAは、タスク分解、スクリプト生成、タスク実行を効果的に管理することで、登録-転送レベル(RTL)からグラフデータシステムバージョンII(GDSII)への設計フローを合理化する。
論文 参考訳(メタデータ) (2023-08-20T08:32:13Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - A Survey and Perspective on Artificial Intelligence for Security-Aware
Electronic Design Automation [6.496603310407321]
我々は、回路設計/最適化、セキュリティとエンジニアリングの課題、セキュリティを意識したCAD/EDAの研究、今後の研究方向性について、AL/MLの現状を要約する。
論文 参考訳(メタデータ) (2022-04-19T17:46:39Z) - The Dark Side: Security Concerns in Machine Learning for EDA [29.20366952640125]
多くの前例のない効率的なEDA手法が機械学習(ML)技術によって実現されている。
MLは回路設計において大きな可能性を示しているが、セキュリティ問題に関する暗黒面はほとんど議論されていない。
本稿では,ML for EDAにおけるすべてのセキュリティ問題について,包括的かつ公平に概説する。
論文 参考訳(メタデータ) (2022-03-20T16:44:25Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - AI/ML Algorithms and Applications in VLSI Design and Technology [3.1171750528972204]
本稿では、VLSIの設計・製造において過去に導入されたAI/ML自動化アプローチについて概説する。
将来、VLSI設計の分野に革命をもたらすため、様々な抽象化レベルでAI/MLアプリケーションの範囲について論じる。
論文 参考訳(メタデータ) (2022-02-21T07:01:27Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。