Heralding multiple photonic pulsed Bell-pairs via frequency-resolved
entanglement swapping
- URL: http://arxiv.org/abs/2102.03485v1
- Date: Sat, 6 Feb 2021 02:55:55 GMT
- Title: Heralding multiple photonic pulsed Bell-pairs via frequency-resolved
entanglement swapping
- Authors: Sofiane Merkouche, Val\'erian Thiel, Alex O. C. Davis, Brian J. Smith
- Abstract summary: Entanglement is a unique property of quantum systems and an essential resource for many quantum technologies.
The ability to transfer or swap entanglement between systems is an important protocol in quantum information science.
Here an experiment demonstrating entanglement swapping from two independent multimode time-frequency entangled sources is presented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement is a unique property of quantum systems and an essential
resource for many quantum technologies. The ability to transfer or swap
entanglement between systems is an important protocol in quantum information
science. Entanglement between photons forms the basis of distributed quantum
networks and the demonstration of photonic entanglement swapping is essential
for their realization. Here an experiment demonstrating entanglement swapping
from two independent multimode time-frequency entangled sources is presented,
resulting in multiple heralded temporal-mode Bell states. Entanglement in the
heralded states is verified by measuring conditional anti-correlated joint
spectra as well as quantum beating in two-photon interference. Our
proof-of-concept experiment is able to distinguish up to five orthogonal Bell
pairs within the same setup, limited in principle only by the entanglement of
the sources.
Related papers
- Multi-phonon Fock state heralding with single-photon detection [0.0]
We show how single-photon detection can herald selected multi-phonon Fock states, even in the presence of optical losses.
We also present an approach for quantum tomography of the heralded phonon states.
arXiv Detail & Related papers (2024-07-26T22:51:53Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Few-Body Quantum Chaos, Localization, and Multi-Photon Entanglement in Optical Synthetic Frequency Dimension [12.86091921421344]
We propose a novel approach to generate controllable frequency-entangled photons by using the concept of synthetic frequency dimension in an optical system.
This work is the first to explore rich and controllable quantum phases beyond single particle in a synthetic dimension.
arXiv Detail & Related papers (2024-06-11T15:14:21Z) - Multiplexed quantum state transfer in waveguides [0.0]
A quantum network serves as a testbed to show how to maximize the storage and manipulation of quantum information in QED setups.
We analyze two approaches using wavepacket engineering and quantum state transfer protocols.
We show that state-of-the-art experiments can employ dozens of multiplexed photons with global fidelities fulfilling the requirements imposed by fault-tolerant quantum computing.
arXiv Detail & Related papers (2024-03-18T20:10:29Z) - Coherent control of a high-orbital hole in a semiconductor quantum dot [21.05348937863074]
coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states.
We demonstrate an all-optical method to control high-orbital states of a hole via stimulated Auger process.
Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters.
arXiv Detail & Related papers (2022-12-21T03:49:46Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters.
We experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches.
Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments.
arXiv Detail & Related papers (2020-07-24T18:21:19Z) - Quantum teleportation with hybrid entangled resources prepared from
heralded quantum states [68.8204255655161]
We propose the generation of a hybrid entangled resource (HER)
The work includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated.
No spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
arXiv Detail & Related papers (2020-02-07T21:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.