Scheduling Plans of Tasks
- URL: http://arxiv.org/abs/2102.03555v1
- Date: Sat, 6 Feb 2021 10:14:54 GMT
- Title: Scheduling Plans of Tasks
- Authors: Davide Andrea Guastella
- Abstract summary: We present a algorithm for solving the problem of scheduling plans of tasks.
The proposed algorithm searches for a feasible schedule that maximize the number of plans scheduled.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a heuristic algorithm for solving the problem of scheduling plans
of tasks. The plans are ordered vectors of tasks, and tasks are basic
operations carried out by resources. Plans are tied by temporal, precedence and
resource constraints that makes the scheduling problem hard to solve in
polynomial time. The proposed heuristic, that has a polynomial worst-case time
complexity, searches for a feasible schedule that maximize the number of plans
scheduled, along a fixed time window, with respect to temporal, precedence and
resource constraints.
Related papers
- Semantic Scheduling for LLM Inference [48.19648297172146]
We introduce the concept of semantic scheduling in scheduling of requests from large language models (LLM)<n>We present a novel scheduling algorithm with optimal time complexity, designed to minimize the overall waiting time in LLM-based prompt scheduling.
arXiv Detail & Related papers (2025-06-13T20:15:58Z) - PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving [89.60370366013142]
We propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents.
Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms.
arXiv Detail & Related papers (2025-02-22T06:21:56Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - A Hierarchical Temporal Planning-Based Approach for Dynamic Hoist
Scheduling Problems [11.66506213335498]
Hoist scheduling has become a bottleneck in electroplating industry applications with the development of autonomous devices.
We formulate the hoist scheduling problem as a new temporal planning problem in the form of adapted PDDL.
We provide a collection of real-life benchmark instances that can be used to evaluate solution methods for the problem.
arXiv Detail & Related papers (2022-12-11T05:30:44Z) - Decomposition Strategies and Multi-shot ASP Solving for Job-shop Scheduling [7.977161233209228]
Job-shop Scheduling Problem (JSP) is a well-known and challenging optimization problem in which tasks sharing a machine are to be arranged in a sequence such that encompassing jobs can be completed as early as possible.
In this paper, we investigate problem decomposition into time windows whose operations can be successively scheduled and optimized by means of multi-shot Answer Set Programming (ASP) solving.
arXiv Detail & Related papers (2022-05-16T09:33:00Z) - Anytime Stochastic Task and Motion Policies [12.72186877599064]
We present a new approach for integrated task and motion planning in settings.
Our algorithm is probabilistically complete and can compute feasible solution policies in an anytime fashion.
arXiv Detail & Related papers (2021-08-28T00:23:39Z) - ScheduleNet: Learn to solve multi-agent scheduling problems with
reinforcement learning [10.16257074782054]
We learn ScheduleNet, a decentralized decision-making policy that can effectively coordinate multiple agents to complete tasks.
We validate the effectiveness of ScheduleNet as a general learning-based scheduler for solving various types of multi-agent scheduling tasks.
arXiv Detail & Related papers (2021-06-06T07:08:58Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Task Scoping: Generating Task-Specific Abstractions for Planning [19.411900372400183]
Planning to solve any specific task using an open-scope world model is computationally intractable.
We propose task scoping: a method that exploits knowledge of the initial condition, goal condition, and transition-dynamics structure of a task.
We prove that task scoping never deletes relevant factors or actions, characterize its computational complexity, and characterize the planning problems for which it is especially useful.
arXiv Detail & Related papers (2020-10-17T21:19:25Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
We consider alternatives to an implicit sequential planning assumption.
We propose Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS) for approximating the optimal plan.
We show that this algorithmic flexibility over planning order leads to improved results in navigation tasks in grid-worlds.
arXiv Detail & Related papers (2020-04-23T18:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.