Decomposition Strategies and Multi-shot ASP Solving for Job-shop Scheduling
- URL: http://arxiv.org/abs/2205.07537v3
- Date: Thu, 8 Aug 2024 13:09:25 GMT
- Title: Decomposition Strategies and Multi-shot ASP Solving for Job-shop Scheduling
- Authors: Mohammed M. S. El-Kholany, Martin Gebser, Konstantin Schekotihin,
- Abstract summary: Job-shop Scheduling Problem (JSP) is a well-known and challenging optimization problem in which tasks sharing a machine are to be arranged in a sequence such that encompassing jobs can be completed as early as possible.
In this paper, we investigate problem decomposition into time windows whose operations can be successively scheduled and optimized by means of multi-shot Answer Set Programming (ASP) solving.
- Score: 7.977161233209228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Job-shop Scheduling Problem (JSP) is a well-known and challenging combinatorial optimization problem in which tasks sharing a machine are to be arranged in a sequence such that encompassing jobs can be completed as early as possible. In this paper, we investigate problem decomposition into time windows whose operations can be successively scheduled and optimized by means of multi-shot Answer Set Programming (ASP) solving. From a computational perspective, decomposition aims to split highly complex scheduling tasks into better manageable subproblems with a balanced number of operations such that good-quality or even optimal partial solutions can be reliably found in a small fraction of runtime. We devise and investigate a variety of decomposition strategies in terms of the number and size of time windows as well as heuristics for choosing their operations. Moreover, we incorporate time window overlapping and compression techniques into the iterative scheduling process to counteract optimization limitations due to the restriction to window-wise partial schedules. Our experiments on different JSP benchmark sets show that successive optimization by multi-shot ASP solving leads to substantially better schedules within tight runtime limits than single-shot optimization on the full problem. In particular, we find that decomposing initial solutions obtained with proficient heuristic methods into time windows leads to improved solution quality.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling
Problems Based on Constraint Programming [5.070542698701157]
This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL)
Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets.
arXiv Detail & Related papers (2023-06-09T08:24:56Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep
Learning Method [44.4747903763245]
The Jobs shop Scheduling Problem (JSP) is a canonical optimization problem that is routinely solved for a variety of industrial purposes.
The problem is NP-hard and computationally challenging even for medium-sized instances.
This paper explores a deep learning approach to deliver efficient and accurate approximations to the problem.
arXiv Detail & Related papers (2021-10-12T21:15:19Z) - Generalized Conflict-directed Search for Optimal Ordering Problems [18.231677739397973]
We present GCDO, a branch-and-bound ordering method that generates an optimal total order of events.
Due to its ability to reason over generalized conflicts, GCDO is much more efficient in finding high-quality total orders than the previous conflict-directed approach CDITO.
arXiv Detail & Related papers (2021-03-31T18:46:48Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Solving a Multi-resource Partial-ordering Flexible Variant of the
Job-shop Scheduling Problem with Hybrid ASP [0.4511923587827302]
We consider a Multi-resource Partial-ordering Flexible Job-shop Scheduling (MPF-JSS) problem.
The resources are flexible and can perform one or more operations depending on their properties.
Experiments conducted on a set of instances extracted from a medium-sized semiconductor fault analysis lab indicate that our approach can find schedules for 87 out of 91 considered real-world instances.
arXiv Detail & Related papers (2021-01-25T15:21:32Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.