論文の概要: Dual Guidance Semi-Supervised Action Detection
- arxiv url: http://arxiv.org/abs/2507.21247v1
- Date: Mon, 28 Jul 2025 18:08:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:55.168772
- Title: Dual Guidance Semi-Supervised Action Detection
- Title(参考訳): Dual Guidance Semi-Supervised Action Detection
- Authors: Ankit Singh, Efstratios Gavves, Cees G. M. Snoek, Hilde Kuehne,
- Abstract要約: 空間的時間的行動局在化のための半教師付きアプローチを提案する。
より優れた擬似有界ボックスを選択するための二重誘導ネットワークを導入する。
本フレームワークは,拡張画像に基づく半教師付きベースラインよりも優れた結果が得られる。
- 参考スコア(独自算出の注目度): 71.45023660211145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-Supervised Learning (SSL) has shown tremendous potential to improve the predictive performance of deep learning models when annotations are hard to obtain. However, the application of SSL has so far been mainly studied in the context of image classification. In this work, we present a semi-supervised approach for spatial-temporal action localization. We introduce a dual guidance network to select better pseudo-bounding boxes. It combines a frame-level classification with a bounding-box prediction to enforce action class consistency across frames and boxes. Our evaluation across well-known spatial-temporal action localization datasets, namely UCF101-24 , J-HMDB-21 and AVA shows that the proposed module considerably enhances the model's performance in limited labeled data settings. Our framework achieves superior results compared to extended image-based semi-supervised baselines.
- Abstract(参考訳): 半教師付き学習(SSL)は、アノテーションの入手が困難である場合、ディープラーニングモデルの予測性能を改善する大きな可能性を示している。
しかし、SSLの応用は、画像分類の文脈において主に研究されている。
本研究では,空間的時間的行動ローカライゼーションのための半教師付きアプローチを提案する。
より優れた擬似有界ボックスを選択するための二重誘導ネットワークを導入する。
フレームレベルの分類とバウンディングボックス予測を組み合わせて、フレームとボックス間のアクションクラスの一貫性を強制する。
UCF101-24、J-HMDB-21、AVAなど、よく知られた時空間行動ローカライゼーションデータセットを用いて評価した結果、限られたラベル付きデータ設定において、提案モジュールはモデルの性能を大幅に向上させることが示された。
本フレームワークは,拡張画像に基づく半教師付きベースラインよりも優れた結果が得られる。
関連論文リスト
- Without Paired Labeled Data: End-to-End Self-Supervised Learning for Drone-view Geo-Localization [2.733505168507872]
ドローンビュージオローカライゼーション(DVGL)は、GPSタグ付き衛星画像を取得することで、ドローンの正確なローカライゼーションを実現することを目的としている。
既存の手法は、教師あり学習のために、厳密にペアリングされたドローン衛星画像に大きく依存している。
浅いバックボーンネットワークを用いたエンドツーエンドの自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2025-02-17T02:53:08Z) - USDRL: Unified Skeleton-Based Dense Representation Learning with Multi-Grained Feature Decorrelation [24.90512145836643]
本稿では,特徴デコレーションに基づく統一骨格に基づくDense Representation Learningフレームワークを提案する。
我々のアプローチは現在のSOTA(State-of-the-art)アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-12-12T12:20:27Z) - ResCLIP: Residual Attention for Training-free Dense Vision-language Inference [27.551367463011008]
CLIPの非最終層における自己注意の相互相関も局在特性を示す。
本稿では, 中間層からの相互相関自己アテンションを利用して, 最終ブロックの注意を再認識するResidual Cross-correlation Self-attention (RCS) モジュールを提案する。
RCSモジュールは空間情報を効果的に再構成し、高密度視覚言語推論のためのCLIP内の局在電位を解放する。
論文 参考訳(メタデータ) (2024-11-24T14:14:14Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
予測対象として高レベルな文脈化機能を使用することで,優れた性能が得られることを示す。
具体的には、シンプルで効率的な3D行動表現学習フレームワークであるSkeleton2vecを提案する。
提案するSkeleton2vecは,従来の手法より優れ,最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-01-01T12:08:35Z) - Semi-supervised 3D Object Detection with Proficient Teachers [114.54835359657707]
自律運転のシナリオにおけるクラウドベースの3Dオブジェクト検出器の優位性は、大量の正確なラベル付きサンプルに大きく依存している。
Pseudo-Labeling法はSSLフレームワークで一般的に使用されているが、教師モデルの低品質な予測は、その性能を著しく制限している。
そこで本研究では,教師モデルをさらに高度化することで,半教師付き3次元物体検出のためのPseudo-Labelingフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-26T04:54:03Z) - Zero-Shot Temporal Action Detection via Vision-Language Prompting [134.26292288193298]
視覚言語プロンプト(STALE)を用いた新しいゼロショット時間行動検出モデルを提案する。
我々のモデルは最先端の代替品を著しく上回っている。
我々のモデルは、近年の強力な競合相手よりも監督的TADにおいて優れた結果をもたらす。
論文 参考訳(メタデータ) (2022-07-17T13:59:46Z) - UDA-COPE: Unsupervised Domain Adaptation for Category-level Object Pose
Estimation [84.16372642822495]
我々は、textbfUDA-COPEと呼ばれるカテゴリレベルのオブジェクトポーズ推定のための教師なしドメイン適応(UDA)を提案する。
近年のマルチモーダルなUDA手法に触発された提案手法は,教師が指導する自己教師型学習手法を利用して,ターゲットドメインラベルを使わずにポーズ推定ネットワークを訓練する。
論文 参考訳(メタデータ) (2021-11-24T16:00:48Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
IA(Inter-class DiscrepancyAlignment)という統合フレームワークを提案する。
IDA-DAOは、画像と隣人の相違を考慮した類似度スコアの整合に使用される。
IDA-SSEは、GANで生成された仮想候補画像を導入することで、説得力のあるクラス間隣人を提供できます。
論文 参考訳(メタデータ) (2021-03-02T08:20:08Z) - Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning [0.5156484100374058]
少数のサンプルから新しい視覚カテゴリーを学習することを目的としている。
本稿では,自己認識型補完モジュール(SACモジュール)を提案する。
また,数発の分類のために,識別的深層記述子を選択するためのアクティブマスクも生成する。
論文 参考訳(メタデータ) (2020-03-02T14:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。