Generating Artificial Core Users for Interpretable Condensed Data
- URL: http://arxiv.org/abs/2102.03674v1
- Date: Sat, 6 Feb 2021 21:53:37 GMT
- Title: Generating Artificial Core Users for Interpretable Condensed Data
- Authors: Amy Nesky and Quentin F. Stout
- Abstract summary: We propose a method to generate a small set of Artificial Core Users (ACUs) from real Core User data.
Our ACUs have dense rating information, and improve the recommendation performance of real Core Users while remaining interpretable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent work has shown that in a dataset of user ratings on items there exists
a group of Core Users who hold most of the information necessary for
recommendation. This set of Core Users can be as small as 20 percent of the
users. Core Users can be used to make predictions for out-of-sample users
without much additional work. Since Core Users substantially shrink a ratings
dataset without much loss of information, they can be used to improve
recommendation efficiency. We propose a method, combining latent factor models,
ensemble boosting and K-means clustering, to generate a small set of Artificial
Core Users (ACUs) from real Core User data. Our ACUs have dense rating
information, and improve the recommendation performance of real Core Users
while remaining interpretable.
Related papers
- Dissertation: On the Theoretical Foundation of Model Comparison and Evaluation for Recommender System [4.76281731053599]
Recommender systems utilize users' historical data to infer customer interests and provide personalized recommendations.
Collaborative filtering is one family of recommendation algorithms that uses ratings from multiple users to predict missing ratings.
Recommender systems can be more complex and incorporate auxiliary data such as content-based attributes, user interactions, and contextual information.
arXiv Detail & Related papers (2024-11-04T06:31:52Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - Knowledge-Enhanced Recommendation with User-Centric Subgraph Network [38.814514460928386]
We propose Knowledge-enhanced User-Centric subgraph Network (KUCNet) for effective recommendation.
KUCNet is a subgraph learning approach with graph neural network (GNN) for effective recommendation.
Our proposed method achieves accurate, efficient, and interpretable recommendations especially for new items.
arXiv Detail & Related papers (2024-03-21T13:09:23Z) - Composable Core-sets for Diversity Approximation on Multi-Dataset
Streams [4.765131728094872]
Composable core-sets are core-sets with the property that subsets of the core set can be unioned together to obtain an approximation for the original data.
We introduce a core-set construction algorithm for constructing composable core-sets to summarize streamed data for use in active learning environments.
arXiv Detail & Related papers (2023-08-10T23:24:51Z) - Less Can Be More: Exploring Population Rating Dispositions with
Partitioned Models in Recommender Systems [1.4279471205248533]
We find that users with different rating dispositions may use the recommender system differently.
We find that such partitioning improves computational efficiency but also improves top-k performance and predictive accuracy.
arXiv Detail & Related papers (2023-06-20T04:16:53Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
We propose a "small data for big task" paradigm dubbed Meta Clustering Learning (MCL)
MCL only pseudo-labels a subset of the entire unlabeled data via clustering to save computing for the first-phase training.
Our method significantly saves computational cost while achieving a comparable or even better performance compared to prior works.
arXiv Detail & Related papers (2021-11-19T04:10:18Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
The cold-start recommendation is an urgent problem in contemporary online applications.
We propose a meta-learning based cold-start sequential recommendation framework called metaCSR.
metaCSR holds the ability to learn the common patterns from regular users' behaviors.
arXiv Detail & Related papers (2021-10-18T08:11:24Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z) - How to Put Users in Control of their Data in Federated Top-N
Recommendation with Learning to Rank [16.256897977543982]
We present FPL, an architecture in which users collaborate in training a central factorization model while controlling the amount of sensitive data leaving their devices.
The proposed approach implements pair-wise learning-to-rank optimization by following the Federated Learning principles.
arXiv Detail & Related papers (2020-08-17T10:13:15Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.