SeReNe: Sensitivity based Regularization of Neurons for Structured
Sparsity in Neural Networks
- URL: http://arxiv.org/abs/2102.03773v1
- Date: Sun, 7 Feb 2021 10:53:30 GMT
- Title: SeReNe: Sensitivity based Regularization of Neurons for Structured
Sparsity in Neural Networks
- Authors: Enzo Tartaglione, Andrea Bragagnolo, Francesco Odierna, Attilio
Fiandrotti, Marco Grangetto
- Abstract summary: SeReNe is a method for learning sparse topologies with a structure.
We define the sensitivity of a neuron as the variation of the network output.
By including the neuron sensitivity in the cost function as a regularization term, we areable to prune neurons with low sensitivity.
- Score: 13.60023740064471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks include millions of learnable parameters, making their
deployment over resource-constrained devices problematic. SeReNe
(Sensitivity-based Regularization of Neurons) is a method for learning sparse
topologies with a structure, exploiting neural sensitivity as a regularizer. We
define the sensitivity of a neuron as the variation of the network output with
respect to the variation of the activity of the neuron. The lower the
sensitivity of a neuron, the less the network output is perturbed if the neuron
output changes. By including the neuron sensitivity in the cost function as a
regularization term, we areable to prune neurons with low sensitivity. As
entire neurons are pruned rather then single parameters, practical network
footprint reduction becomes possible. Our experimental results on multiple
network architectures and datasets yield competitive compression ratios with
respect to state-of-the-art references.
Related papers
- Neuroevolutionary algorithms driven by neuron coverage metrics for
semi-supervised classification [60.60571130467197]
In some machine learning applications the availability of labeled instances for supervised classification is limited while unlabeled instances are abundant.
We introduce neuroevolutionary approaches that exploit unlabeled instances by using neuron coverage metrics computed on the neural network architecture encoded by each candidate solution.
arXiv Detail & Related papers (2023-03-05T23:38:44Z) - Synaptic Stripping: How Pruning Can Bring Dead Neurons Back To Life [0.0]
We introduce Synaptic Stripping as a means to combat the dead neuron problem.
By automatically removing problematic connections during training, we can regenerate dead neurons.
We conduct several ablation studies to investigate these dynamics as a function of network width and depth.
arXiv Detail & Related papers (2023-02-11T23:55:50Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
The spiking neural network (SNN) using leaky-integrated-and-fire (LIF) neurons has been commonly used in automatic speech recognition (ASR) tasks.
Here we introduce four types of neuronal dynamics to post-process the sequential patterns generated from the spiking transformer.
We found that the DyTr-SNN could handle the non-toy automatic speech recognition task well, representing a lower phoneme error rate, lower computational cost, and higher robustness.
arXiv Detail & Related papers (2023-02-02T16:20:27Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Improving Spiking Neural Network Accuracy Using Time-based Neurons [0.24366811507669117]
Research on neuromorphic computing systems based on low-power spiking neural networks using analog neurons is in the spotlight.
As technology scales down, analog neurons are difficult to scale, and they suffer from reduced voltage headroom/dynamic range and circuit nonlinearities.
This paper first models the nonlinear behavior of existing current-mirror-based voltage-domain neurons designed in a 28nm process, and show SNN inference accuracy can be severely degraded by the effect of neuron's nonlinearity.
We propose a novel neuron, which processes incoming spikes in the time domain and greatly improves the linearity, thereby improving the inference accuracy compared to the
arXiv Detail & Related papers (2022-01-05T00:24:45Z) - The Compact Support Neural Network [6.47243430672461]
We present a neuron generalization that has the standard dot-product-based neuron and the RBF neuron as two extreme cases of a shape parameter.
We show how to avoid difficulties in training a neural network with such neurons, by starting with a trained standard neural network and gradually increasing the shape parameter to the desired value.
arXiv Detail & Related papers (2021-04-01T06:08:09Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - A Local Convergence Theory for Mildly Over-Parameterized Two-Layer
Neural Network [39.341620528427306]
We develop a local convergence theory for mildly over- parameterized neural networks.
We show that as long as the loss is already lower than a threshold, all student neurons converge to one of teacher neurons.
Our result holds for any number of student neurons as long as it is at least as large as the number of teacher neurons.
arXiv Detail & Related papers (2021-02-04T04:41:04Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
artificial neural variability (ANV) helps artificial neural networks learn some advantages from natural'' neural networks.
ANV plays as an implicit regularizer of the mutual information between the training data and the learned model.
It can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
arXiv Detail & Related papers (2020-11-12T06:06:33Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.