Global sensing and its impact for quantum many-body probes with
criticality
- URL: http://arxiv.org/abs/2102.03843v1
- Date: Sun, 7 Feb 2021 16:40:17 GMT
- Title: Global sensing and its impact for quantum many-body probes with
criticality
- Authors: Victor Montenegro, Utkarsh Mishra, Abolfazl Bayat
- Abstract summary: Most quantum sensing protocols operate efficiently only when the unknown parameters vary within a very narrow region.
In many-body probes, in which extra tunable parameters exist, our protocol can tune the performance for harnessing the quantum criticality.
We show that even a simple magnetization measurement significantly benefits from our optimization and moderately delivers the theoretical precision.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum sensing is one of the key areas which exemplifies the superiority of
quantum technologies. Nonetheless, most quantum sensing protocols operate
efficiently only when the unknown parameters vary within a very narrow region,
i.e., local sensing. Here, we provide a systematic formulation for quantifying
the precision of a probe for multi-parameter global sensing when there is no
prior information about the parameters. In many-body probes, in which extra
tunable parameters exist, our protocol can tune the performance for harnessing
the quantum criticality over arbitrarily large sensing intervals. For the
single-parameter sensing, our protocol optimizes a control field such that an
Ising probe is tuned to always operate around its criticality. This
significantly enhances the performance of the probe even when the interval of
interest is so large that the precision is bounded by the standard limit. For
the multi-parameter case, our protocol optimizes the control fields such that
the probe operates at the most efficient point along its critical line.
Interestingly, for an Ising probe, it is predominantly determined by the
longitudinal field. Finally, we show that even a simple magnetization
measurement significantly benefits from our optimization and moderately
delivers the theoretical precision.
Related papers
- Quantum-enhanced sensing of spin-orbit coupling without fine-tuning [0.0]
Heisenberg limited enhanced precision is achieved across a wide range of parameters.
We have demonstrated quantum enhanced sensitivity for both single particle and interacting many-body probes.
arXiv Detail & Related papers (2024-11-01T14:00:23Z) - Optimal Multiparameter Metrology: The Quantum Compass Solution [0.0]
We study optimal quantum sensing of multiple physical parameters using repeated measurements.
We identify the combination of input states and measurements that satisfies both optimality criteria.
We refer to the resulting optimal sensor as a quantum compass' solution.
arXiv Detail & Related papers (2024-04-22T14:03:46Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Designing optimal protocols in Bayesian quantum parameter estimation with higher-order operations [0.0]
A major task in quantum sensing is to design the optimal protocol, i.e., the most precise one.
Here, we focus on the single-shot Bayesian setting, where the goal is to find the optimal initial state of the probe.
We leverage the formalism of higher-order operations to develop a method that finds a protocol that is close to the optimal one with arbitrary precision.
arXiv Detail & Related papers (2023-11-02T18:00:36Z) - Optimal protocols for quantum metrology with noisy measurements [0.0]
We show that a quantum preprocessing-optimized parameter determines the ultimate precision limit for quantum sensors under measurement noise.
Applications to noisy quantum states and thermometry are presented, as well as explicit circuit constructions of optimal controls.
arXiv Detail & Related papers (2022-10-20T16:37:47Z) - Tight Cram\'{e}r-Rao type bounds for multiparameter quantum metrology
through conic programming [61.98670278625053]
It is paramount to have practical measurement strategies that can estimate incompatible parameters with best precisions possible.
Here, we give a concrete way to find uncorrelated measurement strategies with optimal precisions.
We show numerically that there is a strict gap between the previous efficiently computable bounds and the ultimate precision bound.
arXiv Detail & Related papers (2022-09-12T13:06:48Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Experimental Bayesian calibration of trapped ion entangling operations [48.43720700248091]
We develop and characterize an efficient calibration protocol to automatically estimate and adjust experimental parameters of the widely used Molmer-Sorensen entangling gate operation.
We experimentally demonstrate a median gate infidelity of $1.3(1)cdot10-3$, requiring only $1200pm500$ experimental cycles, while completing the entire gate calibration procedure in less than one minute.
arXiv Detail & Related papers (2021-12-02T16:59:00Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
Continuous monitoring of every sensor can be expensive due to resource constraints.
We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions.
We propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions.
arXiv Detail & Related papers (2021-07-22T07:25:35Z) - Protocols for estimating multiple functions with quantum sensor
networks: geometry and performance [1.6515040019372476]
We consider the problem of estimating multiple analytic functions of a set of local parameters via qubit sensors in a quantum sensor network.
We develop a new optimized sequential protocol for measuring such functions.
arXiv Detail & Related papers (2021-04-19T18:05:04Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.