Quantum computing models for artificial neural networks
- URL: http://arxiv.org/abs/2102.03879v2
- Date: Thu, 20 May 2021 10:11:10 GMT
- Title: Quantum computing models for artificial neural networks
- Authors: Stefano Mangini, Francesco Tacchino, Dario Gerace, Daniele Bajoni,
Chiara Macchiavello
- Abstract summary: We give an overview of the most recent proposals aimed at bringing together these ongoing revolutions.
We discuss the potential role of near term quantum hardware in the quest for quantum machine learning advantage.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are computing models that have been leading progress in
Machine Learning (ML) and Artificial Intelligence (AI) applications. In
parallel, the first small scale quantum computing devices have become available
in recent years, paving the way for the development of a new paradigm in
information processing. Here we give an overview of the most recent proposals
aimed at bringing together these ongoing revolutions, and particularly at
implementing the key functionalities of artificial neural networks on quantum
architectures. We highlight the exciting perspectives in this context and
discuss the potential role of near term quantum hardware in the quest for
quantum machine learning advantage.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Neural networks with quantum states of light [2.621434923709917]
Photonic artificial neural networks offer the opportunity to exploit the advantages of both classical and quantum optics.
Photonic neuro-inspired computation and machine learning have been successfully demonstrated in classical settings.
Quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing.
arXiv Detail & Related papers (2024-10-23T09:23:49Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Neural Network Classifiers: A Tutorial [1.4567067583556714]
We focus on quantum neural networks in the form of parameterized quantum circuits.
We will mainly discuss different structures and encoding strategies of quantum neural networks for supervised learning tasks.
benchmark their performance utilizing Yao.jl, a quantum simulation package written in Julia Language.
arXiv Detail & Related papers (2022-06-06T18:00:01Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
We propose a novel neural network model named Quantum Convolutional Neural Network (QCNN)
QCNN is based on implementable quantum circuits and has a similar structure as classical convolutional neural networks.
Numerical simulation results on the MNIST dataset demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-08T06:47:34Z) - Experimental quantum memristor [0.5396401833457565]
We introduce and experimentally demonstrate a novel quantum-optical memristor based on integrated photonics and acts on single photons.
Our device could become a building block of immediate and near-term quantum neuromorphic architectures.
arXiv Detail & Related papers (2021-05-11T08:42:14Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.