Neural networks with quantum states of light
- URL: http://arxiv.org/abs/2410.17702v1
- Date: Wed, 23 Oct 2024 09:23:49 GMT
- Title: Neural networks with quantum states of light
- Authors: Adrià Labay-Mora, Jorge García-Beni, Gian Luca Giorgi, Miguel C. Soriano, Roberta Zambrini,
- Abstract summary: Photonic artificial neural networks offer the opportunity to exploit the advantages of both classical and quantum optics.
Photonic neuro-inspired computation and machine learning have been successfully demonstrated in classical settings.
Quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing.
- Score: 2.621434923709917
- License:
- Abstract: Quantum optical networks are instrumental to address fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning. In particular, photonic artificial neural networks offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and machine learning have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing. We present a perspective on the state of the art in quantum optical machine learning and the potential advantages of artificial neural networks in circuit designs and beyond, in more general analogue settings characterised by recurrent and coherent complex interactions. We consider two analogue neuro-inspired applications, namely quantum reservoir computing and quantum associative memories, and discuss the enhanced capabilities offered by quantum substrates, highlighting the specific role of light squeezing in this context.
Related papers
- Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Learning Quantum Processes with Memory -- Quantum Recurrent Neural
Networks [0.0]
We propose fully quantum recurrent neural networks, based on dissipative quantum neural networks.
We demonstrate the potential of these algorithms to learn complex quantum processes with memory.
Numerical simulations indicate that our quantum recurrent neural networks exhibit a striking ability to generalise from small training sets.
arXiv Detail & Related papers (2023-01-19T16:58:39Z) - Quantum neural networks force fields generation [0.0]
We design a quantum neural network architecture and apply it successfully to different molecules of growing complexity.
The quantum models exhibit larger effective dimension with respect to classical counterparts and can reach competitive performances.
arXiv Detail & Related papers (2022-03-09T12:10:09Z) - Mutual Reinforcement between Neural Networks and Quantum Physics [0.0]
Quantum machine learning emerges from the symbiosis of quantum mechanics and machine learning.
The use of classical machine learning as a tool applied to quantum physics problems.
The design of a quantum neural network based on the dynamics of a quantum perceptron with the application of shortcuts to adiabaticity gives rise to a short operation time and robust performance.
arXiv Detail & Related papers (2021-05-27T16:20:50Z) - Experimental quantum memristor [0.5396401833457565]
We introduce and experimentally demonstrate a novel quantum-optical memristor based on integrated photonics and acts on single photons.
Our device could become a building block of immediate and near-term quantum neuromorphic architectures.
arXiv Detail & Related papers (2021-05-11T08:42:14Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum computing models for artificial neural networks [0.0]
We give an overview of the most recent proposals aimed at bringing together these ongoing revolutions.
We discuss the potential role of near term quantum hardware in the quest for quantum machine learning advantage.
arXiv Detail & Related papers (2021-02-07T18:49:28Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.