論文の概要: Generate and Revise: Reinforcement Learning in Neural Poetry
- arxiv url: http://arxiv.org/abs/2102.04114v1
- Date: Mon, 8 Feb 2021 10:35:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 16:13:45.198516
- Title: Generate and Revise: Reinforcement Learning in Neural Poetry
- Title(参考訳): 生成と修正: 神経詩における強化学習
- Authors: Andrea Zugarini, Luca Pasqualini, Stefano Melacci, Marco Maggini
- Abstract要約: そこで本研究では,人間と同じように繰り返し再検討・訂正される詩を,全体的な品質向上のために生成する枠組みを提案する。
本モデルでは,スクラッチから詩を生成するとともに,対象の基準に合わせるために,生成したテキストを段階的に調整する。
本手法は,韻文作成にどの単語が責任があるのか,詩文のコヒーレントな変更の仕方などを知ることなく,韻文体系と一致する場合において評価する。
- 参考スコア(独自算出の注目度): 17.128639251861784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Writers, poets, singers usually do not create their compositions in just one
breath. Text is revisited, adjusted, modified, rephrased, even multiple times,
in order to better convey meanings, emotions and feelings that the author wants
to express. Amongst the noble written arts, Poetry is probably the one that
needs to be elaborated the most, since the composition has to formally respect
predefined meter and rhyming schemes. In this paper, we propose a framework to
generate poems that are repeatedly revisited and corrected, as humans do, in
order to improve their overall quality. We frame the problem of revising poems
in the context of Reinforcement Learning and, in particular, using Proximal
Policy Optimization. Our model generates poems from scratch and it learns to
progressively adjust the generated text in order to match a target criterion.
We evaluate this approach in the case of matching a rhyming scheme, without
having any information on which words are responsible of creating rhymes and on
how to coherently alter the poem words. The proposed framework is general and,
with an appropriate reward shaping, it can be applied to other text generation
problems.
- Abstract(参考訳): 作家、詩人、歌手は通常、一息で作曲を作成することはありません。
テキストは、著者が表現したい意味、感情、感情をよりよく伝えるために、再訪、調整、修正、修正、繰り返し、さらには何度も繰り返される。
貴重な芸術の中で、詩はおそらく、構成が正式に事前定義されたメーターとリズムスキームを尊重しなければならないので、最も精巧にする必要があります。
本稿では,人間と同じように繰り返し再訪・修正された詩を生成・生成し,全体の品質を向上させるための枠組みを提案する。
本稿では,強化学習の文脈における詩の改訂の問題,特に親密な政策最適化を用いて考察する。
本モデルでは,スクラッチから詩を生成するとともに,対象の基準に合わせるために,生成したテキストを段階的に調整する。
本手法は,韻文作成にどの単語が責任があるのか,詩文のコヒーレントな変更の仕方などを知ることなく,韻文体系と一致する場合において評価する。
提案フレームワークは汎用的であり,適切な報酬整形を行うことで,他のテキスト生成問題にも適用できる。
関連論文リスト
- REFFLY: Melody-Constrained Lyrics Editing Model [50.03960548399128]
任意の形態のプレーンテキストドラフトを高品質で本格的な歌詞に編集するための,最初の改訂フレームワークであるREFFLYを紹介する。
提案手法は,生成した歌詞が原文の意味を保ち,旋律と整合し,所望の曲構造に固執することを保証する。
論文 参考訳(メタデータ) (2024-08-30T23:22:34Z) - Unsupervised Melody-to-Lyric Generation [91.29447272400826]
本稿では,メロディ・歌詞データを学習することなく高品質な歌詞を生成する手法を提案する。
我々は、メロディと歌詞のセグメンテーションとリズムアライメントを利用して、与えられたメロディをデコード制約にコンパイルする。
我々のモデルは、強いベースラインよりもオントピー的、歌いやすく、知性があり、一貫性のある高品質な歌詞を生成することができる。
論文 参考訳(メタデータ) (2023-05-30T17:20:25Z) - Unsupervised Melody-Guided Lyrics Generation [84.22469652275714]
メロディと歌詞の一致したデータを学習することなく、楽しく聴ける歌詞を生成することを提案する。
メロディと歌詞間の重要なアライメントを活用し、与えられたメロディを制約にコンパイルし、生成プロセスを導く。
論文 参考訳(メタデータ) (2023-05-12T20:57:20Z) - PoeticTTS -- Controllable Poetry Reading for Literary Studies [21.29478270833139]
我々は、人間の参照的引用から韻律的な値をクローンして詩を再合成し、その後、微粒な韻律制御を用いて合成音声を操作する。
詩のTTSモデルを微調整することで、詩のイントネーションパターンを広範囲に捉え、韻律のクローニングと操作に有用であることがわかった。
論文 参考訳(メタデータ) (2022-07-11T13:15:27Z) - PoeLM: A Meter- and Rhyme-Controllable Language Model for Unsupervised
Poetry Generation [42.12348554537587]
形式詩は詩の韻律や韻律に厳格な制約を課している。
この種の詩を創作する以前の作品のほとんどは、既存の詩を監督に用いている。
本稿では,任意の韻律や韻律に従って詩を生成するための教師なしアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-24T17:09:55Z) - Zero-shot Sonnet Generation with Discourse-level Planning and Aesthetics
Features [37.45490765899826]
詩の訓練を必要としないソネットを生成するための新しい枠組みを提案する。
具体的には、コンテンツ計画モジュールを非詩文で訓練し、談話レベルのコヒーレンスを得る。
また、生成されたソネットのパラメータとリズムの制約を課す制約付き復号アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-05-03T23:44:28Z) - CCPM: A Chinese Classical Poetry Matching Dataset [50.90794811956129]
本稿では,詩のマッチングによるモデルの意味的理解を評価するための新しい課題を提案する。
この課題は、現代漢訳の漢詩では、4人の候補者の中から1行の漢詩を選ばなければならない。
このデータセットを構築するために、まず中国古典詩と現代中国語の翻訳の並列データを得る。
論文 参考訳(メタデータ) (2021-06-03T16:49:03Z) - Acrostic Poem Generation [26.604889384391726]
計算創造性分野における新たな課題として,英語のアクロスティック詩生成を提案する。
アクロスティック詩(Acrostic poem)は、隠されたメッセージを含む詩で、典型的には、各行の最初の文字が単語や短い句を綴り出す。
実験の結果,本研究の基準詩は人間に好意的に受け取られており,付加的な制約により品質が損なわれていないことが明らかとなった。
論文 参考訳(メタデータ) (2020-10-05T18:00:15Z) - MixPoet: Diverse Poetry Generation via Learning Controllable Mixed
Latent Space [79.70053419040902]
多様な要素を吸収し,多様なスタイルを創出し,多様性を促進する新しいモデルであるMixPoetを提案する。
半教師付き変分オートエンコーダに基づいて、我々のモデルは潜在空間をいくつかの部分空間に切り離し、それぞれが敵の訓練によって1つの影響因子に条件付けされる。
中国詩の実験結果は、MixPoetが3つの最先端モデルに対して多様性と品質の両方を改善していることを示している。
論文 参考訳(メタデータ) (2020-03-13T03:31:29Z) - Introducing Aspects of Creativity in Automatic Poetry Generation [2.792030485253753]
詩生成とは、詩作品に似たテキストを自動的に生成する教育システムである。
深層学習システムは、詩のコーパスを訓練し、特定の言語スタイルをモデル化することで、独自の詩を生成することができる。
我々は,事前訓練された言語モデルであるGPT-2を下流の詩生成タスクに適用するアプローチを提案する。
論文 参考訳(メタデータ) (2020-02-06T20:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。