Fermionic wave packet scattering: a quantum computing approach
- URL: http://arxiv.org/abs/2312.02272v2
- Date: Wed, 20 Mar 2024 20:40:41 GMT
- Title: Fermionic wave packet scattering: a quantum computing approach
- Authors: Yahui Chai, Arianna Crippa, Karl Jansen, Stefan Kühn, Vincent R. Pascuzzi, Francesco Tacchino, Ivano Tavernelli,
- Abstract summary: We show how to efficiently obtain expectation values of observables throughout the evolution of the wave packets on digital quantum computers.
In addition, we perform a small-scale demonstration on IBM's quantum hardware, showing that our method is suitable for current and near-term quantum devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method to prepare Gaussian wave packets with momentum on top of the interacting ground state of a fermionic Hamiltonian. Using Givens rotation, we show how to efficiently obtain expectation values of observables throughout the evolution of the wave packets on digital quantum computers. We demonstrate our technique by applying it to the staggered lattice formulation of the Thirring model and studying the scattering of two wave packets. Monitoring the the particle density and the entropy produced during the scattering process, we characterize the phenomenon and provide a first step towards studying more complicated collision processes on digital quantum computers. In addition, we perform a small-scale demonstration on IBM's quantum hardware, showing that our method is suitable for current and near-term quantum devices.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Quantum nuclear dynamics on a distributed set of ion-trap quantum computing systems [0.0]
We use an IonQ 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton.
We also provide the first application of distributed quantum computing for chemical dynamics problems.
arXiv Detail & Related papers (2024-06-07T18:27:50Z) - Simulating Meson Scattering on Spin Quantum Simulators [30.432877421232842]
We develop two methods to create entangled spin states corresponding to wave packets of composite particles in analog quantum simulators of Ising spin Hamiltonians.
With a focus on trapped-ion simulators, we numerically benchmark both methods and show that high-fidelity wave packets can be achieved in near-term experiments.
arXiv Detail & Related papers (2024-03-11T18:00:07Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Generation and structuring of multipartite entanglement in Josephson
parametric system [0.0]
vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement.
We achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones.
Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes.
arXiv Detail & Related papers (2022-03-17T11:16:32Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Anyonic two-photon statistics with a semiconductor chip [0.0]
We use parametric down-conversion in an integrated semiconductor chip to generate biphoton states simulating anyonic particle statistics.
Our scheme exploits the frequency entanglement of the photon pairs, which is directly controlled through the spatial shaping of the pump beam.
These results, demonstrated at room temperature and telecom wavelength on a chip-integrated platform, pave the way to the practical implementation of quantum simulation tasks with tailored particle statistics.
arXiv Detail & Related papers (2021-06-30T13:19:15Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.