Fermionic wave packet scattering: a quantum computing approach
- URL: http://arxiv.org/abs/2312.02272v2
- Date: Wed, 20 Mar 2024 20:40:41 GMT
- Title: Fermionic wave packet scattering: a quantum computing approach
- Authors: Yahui Chai, Arianna Crippa, Karl Jansen, Stefan Kühn, Vincent R. Pascuzzi, Francesco Tacchino, Ivano Tavernelli,
- Abstract summary: We show how to efficiently obtain expectation values of observables throughout the evolution of the wave packets on digital quantum computers.
In addition, we perform a small-scale demonstration on IBM's quantum hardware, showing that our method is suitable for current and near-term quantum devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method to prepare Gaussian wave packets with momentum on top of the interacting ground state of a fermionic Hamiltonian. Using Givens rotation, we show how to efficiently obtain expectation values of observables throughout the evolution of the wave packets on digital quantum computers. We demonstrate our technique by applying it to the staggered lattice formulation of the Thirring model and studying the scattering of two wave packets. Monitoring the the particle density and the entropy produced during the scattering process, we characterize the phenomenon and provide a first step towards studying more complicated collision processes on digital quantum computers. In addition, we perform a small-scale demonstration on IBM's quantum hardware, showing that our method is suitable for current and near-term quantum devices.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Quantum nuclear dynamics on a distributed set of ion-trap quantum computing systems [0.0]
We use an IonQ 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton.
We also provide the first application of distributed quantum computing for chemical dynamics problems.
arXiv Detail & Related papers (2024-06-07T18:27:50Z) - Simulating Meson Scattering on Spin Quantum Simulators [30.432877421232842]
We develop two methods to create entangled spin states corresponding to wave packets of composite particles in analog quantum simulators of Ising spin Hamiltonians.
With a focus on trapped-ion simulators, we numerically benchmark both methods and show that high-fidelity wave packets can be achieved in near-term experiments.
arXiv Detail & Related papers (2024-03-11T18:00:07Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Generation and structuring of multipartite entanglement in Josephson
parametric system [0.0]
vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement.
We achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones.
Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes.
arXiv Detail & Related papers (2022-03-17T11:16:32Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.