論文の概要: Learning a powerful SVM using piece-wise linear loss functions
- arxiv url: http://arxiv.org/abs/2102.04849v1
- Date: Tue, 9 Feb 2021 14:45:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 14:57:42.990680
- Title: Learning a powerful SVM using piece-wise linear loss functions
- Title(参考訳): 分割線形損失関数を用いた強力なsvmの学習
- Authors: Pritam Anand
- Abstract要約: k-PL-SVMモデル(k-PL-SVM)は、適応SVMモデルである。
k = 2 および 3 に対する k-PL-SVM モデルによる広範な数値実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we have considered general k-piece-wise linear convex loss
functions in SVM model for measuring the empirical risk. The resulting
k-Piece-wise Linear loss Support Vector Machine (k-PL-SVM) model is an adaptive
SVM model which can learn a suitable piece-wise linear loss function according
to nature of the given training set. The k-PL-SVM models are general SVM models
and existing popular SVM models, like C-SVM, LS-SVM and Pin-SVM models, are
their particular cases. We have performed the extensive numerical experiments
with k-PL-SVM models for k = 2 and 3 and shown that they are improvement over
existing SVM models.
- Abstract(参考訳): 本稿では,経験的リスクを測定するために,svmモデルにおける一般の k-ピースワイズ線形凸損失関数を考察する。
得られたk-Piece-wise Linear loss Support Vector Machine (k-PL-SVM)モデルは、与えられたトレーニングセットの性質に応じて適切なピースワイズ線形損失関数を学習できる適応型SVMモデルである。
k-PL-SVMモデルは一般的なSVMモデルであり、C-SVM、LS-SVM、Pin-SVMモデルといった既存のSVMモデルは、その特定のケースである。
k = 2 と 3 の k-PL-SVM モデルを用いて広範な数値実験を行い、既存の SVM モデルよりも改善していることを示した。
関連論文リスト
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
一般状態空間モデル(英: General State-space Model, SSM)は、統計機械学習において広く用いられ、時系列データに対して最も古典的な生成モデルの一つである。
オンラインシーケンシャルIWAE(OSIWAE)は、潜在状態の推測のためのモデルパラメータとマルコフ認識モデルの両方のオンライン学習を可能にする。
このアプローチは、最近提案されたオンライン変分SMC法よりも理論的によく確立されている。
論文 参考訳(メタデータ) (2024-11-04T16:12:37Z) - Multiview learning with twin parametric margin SVM [0.0]
マルチビュー学習(MVL)は、相互補完するために多様な視点の利点を活用する。
マルチビュー・ツインパラメトリック・マージン支援ベクトルマシン(MvTPMSVM)を提案する。
MvTPMSVMは、両クラスに対応するパラメトリック・マージン・ハイパープレーンを構築し、異方性雑音構造の影響を規制し、管理することを目的としている。
論文 参考訳(メタデータ) (2024-08-04T10:16:11Z) - Local Binary and Multiclass SVMs Trained on a Quantum Annealer [0.8399688944263844]
近年,動作量子アンニールの出現に伴い,量子トレーニングと古典的実行を特徴とするハイブリッドSVMモデルが導入されている。
これらのモデルは、古典的なモデルに匹敵する性能を示した。
しかし、現在の量子アニールの接続が制限されているため、トレーニングセットサイズに制限がある。
論文 参考訳(メタデータ) (2024-03-13T14:37:00Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - Soft-SVM Regression For Binary Classification [0.0]
ソフトネスとクラス分離パラメータを用いたヒンジ損失関数の凸緩和に基づく新しい指数族を導入する。
この新しいファミリーはSoft-SVMと呼ばれ、ロジスティック回帰とSVM分類を効果的に橋渡しする一般化線形モデルを規定することができる。
論文 参考訳(メタデータ) (2022-05-24T03:01:35Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Chance constrained conic-segmentation support vector machine with
uncertain data [0.0]
サポートベクトルマシン(SVM)は、よく知られた学習アルゴリズムのクラスの一つである。
本稿では,CS-SVMのデータポイントの不確かさや誤動作について検討する。
論文 参考訳(メタデータ) (2021-07-28T12:29:47Z) - Estimating Average Treatment Effects with Support Vector Machines [77.34726150561087]
サポートベクターマシン(SVM)は、機械学習文献で最も人気のある分類アルゴリズムの1つです。
我々はsvmをカーネルベースの重み付け手順として適用し,治療群と制御群の最大平均差を最小化する。
このトレードオフから生じる因果効果推定のバイアスを特徴づけ、提案されたSVM手順と既存のカーネルバランシング手法を結びつけます。
論文 参考訳(メタデータ) (2021-02-23T20:22:56Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z) - FLAMBE: Structural Complexity and Representation Learning of Low Rank
MDPs [53.710405006523274]
この研究は、表現学習の問題に焦点を当てている。
基礎となる(未知の)力学が低階遷移行列に対応するという仮定の下で、表現学習問題と特定の非線形行列分解問題との関連性を示す。
低階遷移モデルにおけるRLの探索と表現学習を行うFLAMBEを開発した。
論文 参考訳(メタデータ) (2020-06-18T19:11:18Z) - Unified SVM Algorithm Based on LS-DC Loss [0.0]
異なるSVMモデルをトレーニングできるアルゴリズムを提案する。
UniSVMはクローズドフォームのソリューションであるため、既存のすべてのアルゴリズムに対して圧倒的な優位性がある。
実験によると、UniSVMはトレーニング時間の短縮で同等のパフォーマンスを達成できる。
論文 参考訳(メタデータ) (2020-06-16T12:40:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。