論文の概要: rl_reach: Reproducible Reinforcement Learning Experiments for Robotic
Reaching Tasks
- arxiv url: http://arxiv.org/abs/2102.04916v1
- Date: Tue, 9 Feb 2021 16:14:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 18:49:27.844219
- Title: rl_reach: Reproducible Reinforcement Learning Experiments for Robotic
Reaching Tasks
- Title(参考訳): rl_reach: ロボットリーチタスクのための再現可能な強化学習実験
- Authors: Pierre Aumjaud, David McAuliffe, Francisco Javier Rodr\'iguez Lera,
Philip Cardiff
- Abstract要約: 自己完結型のオープンソースで使いやすいソフトウェアパッケージであるrl_reachを紹介します。
カスタマイズ可能なロボット到達タスクのための再現可能な強化学習実験を実行するように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Training reinforcement learning agents at solving a given task is highly
dependent on identifying optimal sets of hyperparameters and selecting suitable
environment input / output configurations. This tedious process could be eased
with a straightforward toolbox allowing its user to quickly compare different
training parameter sets. We present rl_reach, a self-contained, open-source and
easy-to-use software package designed to run reproducible reinforcement
learning experiments for customisable robotic reaching tasks. rl_reach packs
together training environments, agents, hyperparameter optimisation tools and
policy evaluation scripts, allowing its users to quickly investigate and
identify optimal training configurations. rl_reach is publicly available at
this URL: https://github.com/PierreExeter/rl_reach.
- Abstract(参考訳): 与えられたタスクを解決するための強化学習エージェントのトレーニングは、ハイパーパラメータの最適なセットを特定し、適切な環境入力/出力構成を選択することに大きく依存する。
この面倒なプロセスは、簡単なツールボックスで簡単になり、ユーザーは異なるトレーニングパラメータを素早く比較できる。
カスタマイズ可能なロボットリーチタスクのための再現可能な強化学習実験を実行するために設計された,自己完結型,オープンソース,使いやすいソフトウェアパッケージであるrl_reachを提案する。
rl_reachは、トレーニング環境、エージェント、ハイパーパラメータ最適化ツール、ポリシー評価スクリプトをまとめて、最適なトレーニング設定を素早く調査し特定することができる。
rl_reachはこのURLで公開されている。
関連論文リスト
- SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Learning Visual Tracking and Reaching with Deep Reinforcement Learning
on a UR10e Robotic Arm [2.2168889407389445]
強化学習アルゴリズムは、ロボットがそれらを再プログラミングすることなく、新しいタスクを完了するための最適な解を学習できる可能性を提供する。
強化学習における現在の最先端技術は、最適な性能を達成するために、高速なシミュレーションと並列化に依存している。
本稿では,産業用UR10eロボットへの深部強化学習の適用について概説する。
論文 参考訳(メタデータ) (2023-08-28T15:34:43Z) - Learn Fast, Segment Well: Fast Object Segmentation Learning on the iCub
Robot [20.813028212068424]
我々は、新しいオブジェクトや異なるドメインの存在下で、オブジェクトセグメンテーションモデルに適応できる様々な技術について研究する。
データをストリーム化するロボットアプリケーションのための高速なインスタンスセグメンテーション学習のためのパイプラインを提案する。
提案したパイプラインを2つのデータセットでベンチマークし、実際のロボットであるiCubヒューマノイドにデプロイする。
論文 参考訳(メタデータ) (2022-06-27T17:14:04Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Discovery of Options via Meta-Learned Subgoals [59.2160583043938]
オプションの形での時間的抽象化は、強化学習(RL)エージェントの学習の高速化に役立つことが示されている。
マルチタスクRL環境で有用なオプションを発見するための新しいメタグラデーションアプローチを紹介します。
論文 参考訳(メタデータ) (2021-02-12T19:50:40Z) - Hyperparameter Auto-tuning in Self-Supervised Robotic Learning [12.193817049957733]
不十分な学習(局所最適収束による)は、冗長な学習が時間と資源を浪費する一方で、低パフォーマンスの政策をもたらす。
自己教師付き強化学習のためのエビデンス下界(ELBO)に基づく自動チューニング手法を提案する。
本手法は,オンラインで自動チューニングが可能であり,計算資源のごく一部で最高の性能が得られる。
論文 参考訳(メタデータ) (2020-10-16T08:58:24Z) - Solving Challenging Dexterous Manipulation Tasks With Trajectory
Optimisation and Reinforcement Learning [14.315501760755609]
人為的なロボットハンドの使い方を自律的に学ぶ訓練エージェントは、様々な複雑な操作タスクを実行できるシステムに繋がる可能性を秘めている。
まず、現在の強化学習と軌跡最適化技術が困難であるような、シミュレーション操作の難易度を課題として紹介する。
次に、これらの環境における既存の手法よりもはるかに優れた性能を示す、単純な軌道最適化を導入する。
論文 参考訳(メタデータ) (2020-09-09T13:49:52Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
プログレッシブニューラルネットワーク学習は、ネットワークのトポロジを漸進的に構築し、トレーニングデータに基づいてパラメータを最適化するアルゴリズムのクラスである。
段階的なトレーニングステップ毎にトレーニングデータのサブセットを活用することで,このプロセスの高速化を提案する。
オブジェクト,シーン,顔の認識における実験結果から,提案手法が最適化手順を大幅に高速化することを示す。
論文 参考訳(メタデータ) (2020-02-17T18:57:33Z) - Accelerating Reinforcement Learning for Reaching using Continuous
Curriculum Learning [6.703429330486276]
我々は、強化学習(RL)訓練の加速と、多目標到達タスクの性能向上に重点を置いている。
具体的には、トレーニングプロセス中に要件を徐々に調整する精度ベースの継続的カリキュラム学習(PCCL)手法を提案する。
このアプローチは、シミュレーションと実世界のマルチゴールリーチ実験の両方において、ユニバーサルロボット5eを用いてテストされる。
論文 参考訳(メタデータ) (2020-02-07T10:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。