論文の概要: Regularization Strategies for Quantile Regression
- arxiv url: http://arxiv.org/abs/2102.05135v1
- Date: Tue, 9 Feb 2021 21:10:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-11 14:40:39.467419
- Title: Regularization Strategies for Quantile Regression
- Title(参考訳): 量子回帰の正規化戦略
- Authors: Taman Narayan, Serena Wang, Kevin Canini, Maya Gupta
- Abstract要約: 連続的な量子の分布に対するピンボール損失を最小化することは、特定の量子の予測のみを行う場合でも良い正則化器であることを示す。
格子モデルにより予測された分布を位置スケールの族に正規化できることを示す。
- 参考スコア(独自算出の注目度): 8.232258589877942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate different methods for regularizing quantile regression when
predicting either a subset of quantiles or the full inverse CDF. We show that
minimizing an expected pinball loss over a continuous distribution of quantiles
is a good regularizer even when only predicting a specific quantile. For
predicting multiple quantiles, we propose achieving the classic goal of
non-crossing quantiles by using deep lattice networks that treat the quantile
as a monotonic input feature, and we discuss why monotonicity on other features
is an apt regularizer for quantile regression. We show that lattice models
enable regularizing the predicted distribution to a location-scale family.
Lastly, we propose applying rate constraints to improve the calibration of the
quantile predictions on specific subsets of interest and improve fairness
metrics. We demonstrate our contributions on simulations, benchmark datasets,
and real quantile regression problems.
- Abstract(参考訳): 量子化のサブセットまたは全逆CDFの予測において、量子化の回帰を正則化する異なる手法について検討する。
連続的な量子の分布に対するピンボール損失を最小化することは、特定の量子の予測のみを行う場合でも良い正則化器であることを示す。
多重量子化を予測するために, 量子化をモノトニックな入力機能として扱うディープ格子ネットワークを用いて非交差量子化の古典的な目標を達成することを提案し, 他の特徴に対するモノトニック性が量子回帰に対するアプティック正規化である理由を議論する。
格子モデルが位置スケールファミリーへの予測分布を正規化できることを示した。
最後に,利害関係の特定部分の定量予測のキャリブレーションを改善し,公平性指標を改善するためのレート制約の適用を提案する。
シミュレーション,ベンチマークデータセット,実数量的回帰問題に対する我々の貢献を実証する。
関連論文リスト
- Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Quantile Regression using Random Forest Proximities [0.9423257767158634]
量子回帰林は、対象変数の条件分布全体を単一のモデルで推定する。
本研究では,ランダムフォレスト近似を用いた量子レグレッションを用いて,QRFの原バージョンに対する条件目標分布と予測間隔の近似において,優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-08-05T10:02:33Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Deep Non-Crossing Quantiles through the Partial Derivative [0.6299766708197883]
量子回帰(Quantile Regression)は、単一の条件量子を近似する方法を提供する。
QRロス関数の最小化は、非交差量子化を保証しない。
任意の数の量子を予測するための汎用的なディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-30T15:35:21Z) - Learning Quantile Functions without Quantile Crossing for
Distribution-free Time Series Forecasting [12.269597033369557]
本稿では,分散フリーな分布推定フレームワークであるIncrmental (Spline) Quantile Function I(S)QFを提案する。
また、シーケンス・ツー・シーケンス・セッティングに基づく提案手法の一般化誤差解析も提供する。
論文 参考訳(メタデータ) (2021-11-12T06:54:48Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
量子レグレッションは、現実の望ましいカバレッジレベルよりもアンファンダーカバー(enmphunder-cover)する傾向がある。
我々は、量子レグレッションが固有のアンダーカバーバイアスに悩まされていることを証明している。
我々の理論は、この過大被覆バイアスが特定の高次元パラメータ推定誤差に起因することを明らかにしている。
論文 参考訳(メタデータ) (2021-06-10T06:11:55Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
量子回帰は、予測の不確実性を定量化する必要性によって動機付けられた統計学習の基本的な問題である。
条件付き量子モデルの任意の数を集約する手法について検討する。
この論文で検討するモデルはすべて、現代のディープラーニングツールキットに適合します。
論文 参考訳(メタデータ) (2021-02-26T23:21:16Z) - Censored Quantile Regression Forest [81.9098291337097]
我々は、検閲に適応し、データが検閲を示さないときに量子スコアをもたらす新しい推定方程式を開発する。
提案手法は, パラメトリックなモデリング仮定を使わずに, 時間単位の定量を推定することができる。
論文 参考訳(メタデータ) (2020-01-08T23:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。