論文の概要: Quantile Regression using Random Forest Proximities
- arxiv url: http://arxiv.org/abs/2408.02355v1
- Date: Mon, 5 Aug 2024 10:02:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 13:56:46.269196
- Title: Quantile Regression using Random Forest Proximities
- Title(参考訳): ランダムフォレスト確率を用いた量子回帰
- Authors: Mingshu Li, Bhaskarjit Sarmah, Dhruv Desai, Joshua Rosaler, Snigdha Bhagat, Philip Sommer, Dhagash Mehta,
- Abstract要約: 量子回帰林は、対象変数の条件分布全体を単一のモデルで推定する。
本研究では,ランダムフォレスト近似を用いた量子レグレッションを用いて,QRFの原バージョンに対する条件目標分布と予測間隔の近似において,優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 0.9423257767158634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the dynamic nature of financial markets, maintaining models that produce precise predictions over time is difficult. Often the goal isn't just point prediction but determining uncertainty. Quantifying uncertainty, especially the aleatoric uncertainty due to the unpredictable nature of market drivers, helps investors understand varying risk levels. Recently, quantile regression forests (QRF) have emerged as a promising solution: Unlike most basic quantile regression methods that need separate models for each quantile, quantile regression forests estimate the entire conditional distribution of the target variable with a single model, while retaining all the salient features of a typical random forest. We introduce a novel approach to compute quantile regressions from random forests that leverages the proximity (i.e., distance metric) learned by the model and infers the conditional distribution of the target variable. We evaluate the proposed methodology using publicly available datasets and then apply it towards the problem of forecasting the average daily volume of corporate bonds. We show that using quantile regression using Random Forest proximities demonstrates superior performance in approximating conditional target distributions and prediction intervals to the original version of QRF. We also demonstrate that the proposed framework is significantly more computationally efficient than traditional approaches to quantile regressions.
- Abstract(参考訳): 金融市場の動的な性質のため、時間とともに正確な予測を生み出すモデルを維持することは困難である。
多くの場合、ゴールは単なるポイント予測ではなく、不確実性を決定することです。
不確実性の定量化、特に市場ドライバーの予測不可能な性質による照会不確実性は、投資家が様々なリスクレベルを理解するのに役立つ。
近年、量子回帰林 (QRF) は有望な解決法として出現している: それぞれの量子化に別々のモデルを必要とするほとんどの基本的な量子化回帰法とは異なり、量子化回帰林は、典型的なランダムな森のすべての健全な特徴を維持しつつ、対象変数の条件分布全体を単一のモデルで推定する。
モデルによって学習された近接距離(距離メートル法)を利用して、対象変数の条件分布を推定するランダム森林からの量子レグレッションを計算する新しい手法を提案する。
提案手法を公開データセットを用いて評価し,企業債の平均日量予測問題に適用する。
本研究では,ランダムフォレスト近似を用いた量子レグレッションを用いて,QRFの原バージョンに対する条件目標分布と予測間隔の近似において,優れた性能を示すことを示す。
また,提案手法は従来の量子回帰法よりも計算効率が高いことを示した。
関連論文リスト
- Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Global Censored Quantile Random Forest [2.8413279736755017]
我々は,正しい検閲対象データに対する条件付き量子化過程を予測するために,GCQRF(Global Censored Quantile Random Forest)を提案する。
我々は、無限の森林を仮定することなく予測過程の変動を定量化し、その弱収束を確立する。
提案手法の予測精度は,既存手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-16T04:05:01Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Regression Trees for Fast and Adaptive Prediction Intervals [2.6763498831034043]
本稿では,局所的なカバレッジ保証を伴う回帰問題に対して,予測間隔を調整するための一連の手法を提案する。
回帰木とランダムフォレストを適合度スコアでトレーニングすることで分割を作成する。
提案手法は多種多様な適合性スコアや予測設定に適用できるため,多種多様である。
論文 参考訳(メタデータ) (2024-02-12T01:17:09Z) - Lazy Estimation of Variable Importance for Large Neural Networks [22.95405462638975]
そこで本研究では,重要な推論保証付き縮小モデルを高速かつフレキシブルに近似する手法を提案する。
いくつかのデータ生成体制下では,本手法が高速かつ正確であることを示し,季節風予報の例で実世界の適用性を示す。
論文 参考訳(メタデータ) (2022-07-19T06:28:17Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Universal Off-Policy Evaluation [64.02853483874334]
ユニバーサルオフ政治推定器(UnO)への第一歩を踏み出す
我々は, 平均, 分散, 分位数/中間数, 分位数範囲, cvar, および累積分布全体の推定と同時結合に uno を用いる。
論文 参考訳(メタデータ) (2021-04-26T18:54:31Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
量子回帰は、予測の不確実性を定量化する必要性によって動機付けられた統計学習の基本的な問題である。
条件付き量子モデルの任意の数を集約する手法について検討する。
この論文で検討するモデルはすべて、現代のディープラーニングツールキットに適合します。
論文 参考訳(メタデータ) (2021-02-26T23:21:16Z) - Regularization Strategies for Quantile Regression [8.232258589877942]
連続的な量子の分布に対するピンボール損失を最小化することは、特定の量子の予測のみを行う場合でも良い正則化器であることを示す。
格子モデルにより予測された分布を位置スケールの族に正規化できることを示す。
論文 参考訳(メタデータ) (2021-02-09T21:10:35Z) - Censored Quantile Regression Forest [81.9098291337097]
我々は、検閲に適応し、データが検閲を示さないときに量子スコアをもたらす新しい推定方程式を開発する。
提案手法は, パラメトリックなモデリング仮定を使わずに, 時間単位の定量を推定することができる。
論文 参考訳(メタデータ) (2020-01-08T23:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。