Dysplasia grading of colorectal polyps through CNN analysis of WSI
- URL: http://arxiv.org/abs/2102.05498v1
- Date: Wed, 10 Feb 2021 15:40:27 GMT
- Title: Dysplasia grading of colorectal polyps through CNN analysis of WSI
- Authors: Daniele Perlo, Enzo Tartaglione, Luca Bertero, Paola Cassoni, Marco
Grangetto
- Abstract summary: The proposed deep learning-based classification pipeline is based on state-of-the-art convolutional neural network.
The experimental results show that one can successfully classify adenomas dysplasia grade with 70% accuracy.
- Score: 5.8797822609846895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Colorectal cancer is a leading cause of cancer death for both men and women.
For this reason, histopathological characterization of colorectal polyps is the
major instrument for the pathologist in order to infer the actual risk for
cancer and to guide further follow-up. Colorectal polyps diagnosis includes the
evaluation of the polyp type, and more importantly, the grade of dysplasia.
This latter evaluation represents a critical step for the clinical follow-up.
The proposed deep learning-based classification pipeline is based on
state-of-the-art convolutional neural network, trained using proper
countermeasures to tackle WSI high resolution and very imbalanced dataset. The
experimental results show that one can successfully classify adenomas dysplasia
grade with 70% accuracy, which is in line with the pathologists' concordance.
Related papers
- NMGrad: Advancing Histopathological Bladder Cancer Grading with Weakly Supervised Deep Learning [1.3911081328487294]
We introduce a pipeline designed for bladder cancer grading using histological slides.
It extracts urothelium tissue tiles at different magnification levels, employing a convolutional neural network for processing for feature extraction.
It employs a nested multiple instance learning approach with attention to predict the grade.
arXiv Detail & Related papers (2024-05-24T07:02:39Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides.
Cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands.
This paper proposes an automated workflow that follows pathologists' textitmodus operandi, isolating and classifying multi-scale patches of individual glands.
arXiv Detail & Related papers (2022-09-27T14:08:19Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A Precision Diagnostic Framework of Renal Cell Carcinoma on Whole-Slide
Images using Deep Learning [4.823436898659051]
A deep convolutional neural network (InceptionV3) was trained on the high-quality annotated dataset of The Cancer Genome Atlas.
Our framework can help pathologists in the detection of cancer region and classification of subtypes and grades, which could be applied to any cancer type.
arXiv Detail & Related papers (2021-10-26T12:53:25Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - UniToPatho, a labeled histopathological dataset for colorectal polyps
classification and adenoma dysplasia grading [12.222174729732904]
We introduce UniToPatho, an annotated dataset of 9536 hematoxylin and eosin (H&E) stained patches extracted from 292 whole-slide images.
This dataset is meant for training deep neural networks for colorectal polyps classification and adenomas grading.
arXiv Detail & Related papers (2021-01-25T10:18:44Z) - Hierarchical Classification of Pulmonary Lesions: A Large-Scale
Radio-Pathomics Study [38.78350161086617]
Diagnosis of pulmonary lesions from computed tomography (CT) is important but challenging for clinical decision making in lung cancer related diseases.
Deep learning has achieved great success in computer aided diagnosis (CADx) area for lung cancer, whereas it suffers from label ambiguity due to the difficulty in the radiological diagnosis.
Considering that invasive pathological analysis serves as the clinical golden standard of lung cancer diagnosis, in this study, we solve the label ambiguity issue via a large-scale radio-pathomics dataset.
This retrospective dataset, named Pulmonary-RadPath, enables development and validation of accurate deep learning systems to predict invasive pathological labels with a non-
arXiv Detail & Related papers (2020-10-08T15:14:34Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
The final diagnosis of prostate cancer is based on the visual detection of Gleason patterns in prostate biopsy by pathologists.
Computer-aided-diagnosis systems allow to delineate and classify the cancerous patterns in the tissue.
The methodological core of this work is a U-Net convolutional neural network for image segmentation modified with residual blocks able to segment cancerous tissue.
arXiv Detail & Related papers (2020-05-22T19:49:10Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z) - Diagnosing Colorectal Polyps in the Wild with Capsule Networks [7.276044182592987]
Colorectal cancer, largely arising from precursor lesions called polyps, remains one of the leading causes of cancer-related death worldwide.
We design a novel capsule network architecture (D-Caps) to improve the viability of optical biopsy of colorectal polyps.
We demonstrate improved results over the previous state-of-the-art convolutional neural network (CNN) approach by as much as 43%.
arXiv Detail & Related papers (2020-01-10T04:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.