Quantum Computing for Optimizing Aircraft Loading
- URL: http://arxiv.org/abs/2504.01567v1
- Date: Wed, 02 Apr 2025 10:10:11 GMT
- Title: Quantum Computing for Optimizing Aircraft Loading
- Authors: Ananth Kaushik, Sang Hyub Kim, Willie Aboumrad, Martin Roetteler, Albana Topi, Richard Ashworth,
- Abstract summary: The aircraft loading optimization problem is a computationally hard problem with the best known classical algorithm scaling exponentially with the number of objects.<n>We propose a quantum approach based on a multi-angle variant of the QAOA algorithm (MAL-VQA) designed to utilize a smaller number of two qubit gates in the quantum circuit.<n>We demonstrate the performance of the algorithm on different instances of the aircraft loading problem by execution on IonQ QPUs Aria and Forte.
- Score: 1.055551340663609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aircraft loading optimization problem is a computationally hard problem with the best known classical algorithm scaling exponentially with the number of objects. We propose a quantum approach based on a multi-angle variant of the QAOA algorithm (Multi-Angle Layered Variational Quantum Algorithm (MAL-VQA)) designed to utilize a smaller number of two qubit gates in the quantum circuit as compared to the standard QAOA algorithm so that the quantum optimization algorithm can be run on near-term ion-trap quantum processing units (QPU). We also describe a novel cost function implementation that can handle many different types of inequality constraints without the overhead of introducing slack variables in the quantum circuit so that larger problems with complex constraints may be represented on near-term QPUs which have low qubit counts. We demonstrate the performance of the algorithm on different instances of the aircraft loading problem by execution on IonQ QPUs Aria and Forte. Our experiments obtain the optimal solutions for all the problem instances studied ranging from 12 qubits to 28 qubits. This shows the potential scalability of the method to significantly larger problem sizes with the improvement of quantum hardware in the near future as well as the robustness of the quantum algorithm against varying initial guesses and varying constraints of different problem instances.
Related papers
- A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Post-processing variationally scheduled quantum algorithm for constrained combinatorial optimization problems [6.407238428292173]
We propose a post-processing variationally scheduled quantum algorithm (pVSQA) for solving constrained optimization problems (COPs)
pVSQA combines the variational methods and the post-processing technique.
We implement pVSQA on a quantum annealer and a gate-type quantum device.
arXiv Detail & Related papers (2023-09-15T03:09:16Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
We show the largest-to-date execution of a quantum optimization algorithm that preserves constraints on quantum hardware.
We execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159.
We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.
arXiv Detail & Related papers (2022-06-13T16:21:04Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - The Variational Quantum Eigensolver: a review of methods and best
practices [3.628860803653535]
The variational quantum eigensolver (or VQE) uses the variational principle to compute the ground state energy of a Hamiltonian.
This review aims to provide an overview of the progress that has been made on the different parts of the algorithm.
arXiv Detail & Related papers (2021-11-09T14:40:18Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.