Light Cone Cancellation for Variational Quantum Eigensolver Ansatz
- URL: http://arxiv.org/abs/2404.19497v1
- Date: Tue, 30 Apr 2024 12:31:03 GMT
- Title: Light Cone Cancellation for Variational Quantum Eigensolver Ansatz
- Authors: Xinjian Yan, Xinwei Lee, Ningyi Xie, Yoshiyuki Saito, Leo Kurosawa, Nobuyoshi Asai, Dongsheng Cai, HoongChuin Lau,
- Abstract summary: Variational Quantum Algorithms (VQAs) represent a class of algorithms that utilize a hybrid approach.
In this study, we apply a method known as Light Cone Cancellation (LCC) to optimize variational circuits.
We show that LCC yields higher approximation ratios than those cases without LCC.
- Score: 3.1347083354427707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Quantum Algorithms (VQAs) represent a class of algorithms that utilize a hybrid approach, combining classical and quantum computing techniques. In this approach, classical computers serve as optimizers that update circuit parameters to find approximate solutions to complex problems. In this study, we apply a method known as Light Cone Cancellation (LCC) to optimize variational circuits, effectively reducing the required number of qubits and gates for circuit simulation. We then evaluate the performance of LCC one of the VQAs -- the Variational Quantum Eigensolver (VQE) -- to address the Max-Cut problem. Compared with the Quantum Approximate Optimization Algorithm (QAOA), VQE offers greater degrees of freedom at lower circuit depths. By applying LCC to VQE, we can shift the complexity of circuit simulation from the number of qubits to the number of edges in the graph, i.e., from exponential time to polynomial time. This enables us to solve large problems up to 50 vertices, without actually simulating the entire circuit. From our simulation in a 7-qubit and a 27-qubit noisy devices, we show that LCC yields higher approximation ratios than those cases without LCC, implying that the effect of noise is reduced when LCC is applied.
Related papers
- Optimization by Decoded Quantum Interferometry [43.55132675053983]
We introduce a quantum algorithm for reducing classical optimization problems to classical decoding problems.
We show that DQI achieves a better approximation ratio than any quantum-time classical algorithm known to us.
arXiv Detail & Related papers (2024-08-15T17:47:42Z) - Performance analysis of a filtering variational quantum algorithm [0.0]
Filtering Variational Quantum Eigensolver (F-VQE) is a variational hybrid quantum algorithm designed to solve optimization problems on existing quantum computers.
We employ Instantaneous Quantum Polynomial circuits as our parameterized quantum circuits.
Despite some observed positive signs, we conclude that significant development is necessary for a practical advantage with F-VQE.
arXiv Detail & Related papers (2024-04-13T08:50:44Z) - Towards Optimizations of Quantum Circuit Simulation for Solving Max-Cut
Problems with QAOA [1.5047640669285467]
Quantum approximate optimization algorithm (QAOA) is one of the popular quantum algorithms that are used to solve optimization problems via approximations.
However, performing QAOA on virtual quantum computers suffers from a slow simulation speed for solving optimization problems.
We propose techniques to accelerate QCS for QAOA using mathematical optimizations to compress quantum operations.
arXiv Detail & Related papers (2023-12-05T06:08:57Z) - NISQ-compatible approximate quantum algorithm for unconstrained and
constrained discrete optimization [0.0]
We present an approximate gradient-based quantum algorithm for hardware-efficient circuits with amplitude encoding.
We show how simple linear constraints can be directly incorporated into the circuit without additional modification of the objective function with penalty terms.
arXiv Detail & Related papers (2023-05-23T16:17:57Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Layer VQE: A Variational Approach for Combinatorial Optimization on
Noisy Quantum Computers [5.644434841659249]
We propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE)
We show that L-VQE is more robust to finite sampling errors and has a higher chance of finding the solution as compared with standard VQE approaches.
Our simulation results show that L-VQE performs well under realistic hardware noise.
arXiv Detail & Related papers (2021-02-10T16:53:22Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.