論文の概要: Large Scale Distributed Collaborative Unlabeled Motion Planning with
Graph Policy Gradients
- arxiv url: http://arxiv.org/abs/2102.06284v1
- Date: Thu, 11 Feb 2021 21:57:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-15 15:42:16.296876
- Title: Large Scale Distributed Collaborative Unlabeled Motion Planning with
Graph Policy Gradients
- Title(参考訳): グラフポリシー勾配を用いた大規模分散協調型無ラベル運動計画
- Authors: Arbaaz Khan, Vijay Kumar, Alejandro Ribeiro
- Abstract要約: 本研究では,運動制約と空間制約を多数のロボットに対して2次元空間で解くための学習法を提案する。
ロボットのポリシーをパラメータ化するためにグラフニューラルネットワーク(GNN)を用いる。
- 参考スコア(独自算出の注目度): 122.85280150421175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a learning method to solve the unlabelled motion
problem with motion constraints and space constraints in 2D space for a large
number of robots. To solve the problem of arbitrary dynamics and constraints we
propose formulating the problem as a multi-agent problem. We are able to
demonstrate the scalability of our methods for a large number of robots by
employing a graph neural network (GNN) to parameterize policies for the robots.
The GNN reduces the dimensionality of the problem by learning filters that
aggregate information among robots locally, similar to how a convolutional
neural network is able to learn local features in an image. Additionally, by
employing a GNN we are also able to overcome the computational overhead of
training policies for a large number of robots by first training graph filters
for a small number of robots followed by zero-shot policy transfer to a larger
number of robots. We demonstrate the effectiveness of our framework through
various simulations.
- Abstract(参考訳): 本稿では,多数のロボットの2次元空間における運動制約と空間制約を用いて,不規則な動作問題を解決する学習手法を提案する。
任意の力学と制約の問題を解くため,マルチエージェント問題として定式化することを提案する。
我々は、グラフニューラルネットワーク(GNN)を用いて、ロボットのポリシーをパラメータ化することで、多数のロボットに対するメソッドのスケーラビリティを実証することができる。
GNNは、畳み込みニューラルネットワークが画像内の局所的な特徴を学習する方法と同様に、ロボット間で情報を集約するフィルタを学習することにより、問題の寸法性を低減します。
さらに、GNNを使用することで、少数のロボットに対してグラフフィルタをトレーニングし、さらに多数のロボットにゼロショットポリシーを転送することで、多数のロボットに対するトレーニングポリシーの計算オーバーヘッドを克服することができる。
様々なシミュレーションによる枠組みの有効性を実証する。
関連論文リスト
- Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
ラベルなしの動作計画では、衝突回避を確保しながら、ロボットのセットを目標の場所に割り当てる。
この問題は、探査、監視、輸送などの応用において、マルチロボットシステムにとって不可欠なビルディングブロックを形成している。
この問題に対処するために、各ロボットは、その400ドルのアネレストロボットと$k$アネレストターゲットの位置のみを知っている分散環境で対処する。
論文 参考訳(メタデータ) (2024-09-29T23:57:25Z) - Multi-Robot Informative Path Planning for Efficient Target Mapping using Deep Reinforcement Learning [11.134855513221359]
本稿では,多ボット情報経路計画のための新しい深層強化学習手法を提案する。
我々は、集中的な訓練と分散実行パラダイムを通じて強化学習政策を訓練する。
提案手法は,他の最先端のマルチロボット目標マッピング手法よりも33.75%向上する。
論文 参考訳(メタデータ) (2024-09-25T14:27:37Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
本稿では,ロボットのポーズ,障害物マップ,ロボットのフットプリントに基づいて,異なる衝突コストを返却するニューラルネットワークモデルを提案する。
私たちのアーキテクチャには、障害物マップとロボットフットプリントを埋め込みに変換するニューラルイメージエンコーダが含まれています。
Husky UGVモバイルロボットの実験は、我々のアプローチがリアルタイムで安全なローカルプランニングを可能にすることを示した。
論文 参考訳(メタデータ) (2023-10-25T05:00:21Z) - Scalable Multi-robot Motion Planning for Congested Environments With
Topological Guidance [2.846144602096543]
マルチロボットモーションプランニング(MRMP)は、連続状態空間におけるロボットの衝突のない経路を見つける問題である。
我々は、トポロジカルガイダンスによって提供される改善された効率を活用するために、既存のシングルロボットモーションプランニング手法を拡張した。
提案手法は,多くの狭い経路を持つ複雑な環境における経路を効率的に計画する能力を示し,既存の方法の最大25倍の大きさのロボットチームに拡張する。
論文 参考訳(メタデータ) (2022-10-13T16:26:01Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。