Data Analytics and Machine Learning Methods, Techniques and Tool for
Model-Driven Engineering of Smart IoT Services
- URL: http://arxiv.org/abs/2102.06445v1
- Date: Fri, 12 Feb 2021 11:09:54 GMT
- Title: Data Analytics and Machine Learning Methods, Techniques and Tool for
Model-Driven Engineering of Smart IoT Services
- Authors: Armin Moin
- Abstract summary: This dissertation proposes a novel approach to enhance the development of smart services for the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS)
The proposed approach offers abstraction and automation to the software engineering processes, as well as the Data Analytics (DA) and Machine Learning (ML) practices.
We implement and validate the proposed approach by extending an open source modeling tool, called ThingML.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This doctoral dissertation proposes a novel approach to enhance the
development of smart services for the Internet of Things (IoT) and smart
Cyber-Physical Systems (CPS). The proposed approach offers abstraction and
automation to the software engineering processes, as well as the Data Analytics
(DA) and Machine Learning (ML) practices. This is realized in an integrated and
seamless manner. We implement and validate the proposed approach by extending
an open source modeling tool, called ThingML. ThingML is a domain-specific
language and modeling tool with code generation for the IoT/CPS domain. Neither
ThingML nor any other IoT/CPS modeling tool supports DA/ML at the modeling
level. Therefore, as the primary contribution of the doctoral dissertation, we
add the necessary syntax and semantics concerning DA/ML methods and techniques
to the modeling language of ThingML. Moreover, we support the APIs of several
ML libraries and frameworks for the automated generation of the source code of
the target software in Python and Java. Our approach enables
platform-independent, as well as platform-specific models. Further, we assist
in carrying out semiautomated DA/ML tasks by offering Automated ML (AutoML), in
the background (in expert mode), and through model-checking constraints and
hints at design-time. Finally, we consider three use case scenarios from the
domains of network security, smart energy systems and energy exchange markets.
Related papers
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Machine Learning-Enabled Software and System Architecture Frameworks [48.87872564630711]
The stakeholders with data science and Machine Learning related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks.
We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
arXiv Detail & Related papers (2023-08-09T21:54:34Z) - MLOps: A Step Forward to Enterprise Machine Learning [0.0]
This research presents a detailed review of MLOps, its benefits, difficulties, evolutions, and important underlying technologies.
The MLOps workflow is explained in detail along with the various tools necessary for both model and data exploration and deployment.
This article also puts light on the end-to-end production of ML projects using various maturity levels of automated pipelines.
arXiv Detail & Related papers (2023-05-27T20:44:14Z) - MLTEing Models: Negotiating, Evaluating, and Documenting Model and
System Qualities [1.1352560842946413]
MLTE is a framework and implementation to evaluate machine learning models and systems.
It compiles state-of-the-art evaluation techniques into an organizational process.
MLTE tooling supports this process by providing a domain-specific language that teams can use to express model requirements.
arXiv Detail & Related papers (2023-03-03T15:10:38Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - MDE for Machine Learning-Enabled Software Systems: A Case Study and
Comparison of MontiAnna & ML-Quadrat [5.839906946900443]
We propose to adopt the MDE paradigm for the development of Machine Learning-enabled software systems with a focus on the Internet of Things (IoT) domain.
We illustrate how two state-of-the-art open-source modeling tools, namely MontiAnna and ML-Quadrat can be used for this purpose as demonstrated through a case study.
arXiv Detail & Related papers (2022-09-15T13:21:16Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Enabling Un-/Semi-Supervised Machine Learning for MDSE of the Real-World
CPS/IoT Applications [0.5156484100374059]
We propose a novel approach to support domain-specific Model-Driven Software Engineering (MDSE) for the real-world use-case scenarios of smart Cyber-Physical Systems (CPS) and the Internet of Things (IoT)
We argue that the majority of available data in the nature for Artificial Intelligence (AI) are unlabeled. Hence, unsupervised and/or semi-supervised ML approaches are the practical choices.
Our proposed approach is fully implemented and integrated with an existing state-of-the-art MDSE tool to serve the CPS/IoT domain.
arXiv Detail & Related papers (2021-07-06T15:51:39Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - ThingML+ Augmenting Model-Driven Software Engineering for the Internet
of Things with Machine Learning [4.511923587827301]
We present the current position of the research project ML-Quadrat, which aims to extend the methodology, modeling language and tool support of ThingML.
We argue that in many cases IoT/CPS services involve system components and physical processes, whose behaviors are not well understood in order to be modeled using state machines.
We plan to support two target platforms for code generation regarding Stream Processing and Complex Event Processing, namely Apache SAMOA and Apama.
arXiv Detail & Related papers (2020-09-22T15:45:45Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.