論文の概要: A Little Pretraining Goes a Long Way: A Case Study on Dependency Parsing
Task for Low-resource Morphologically Rich Languages
- arxiv url: http://arxiv.org/abs/2102.06551v1
- Date: Fri, 12 Feb 2021 14:26:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-15 20:05:25.803071
- Title: A Little Pretraining Goes a Long Way: A Case Study on Dependency Parsing
Task for Low-resource Morphologically Rich Languages
- Title(参考訳): 小さな事前学習が長い道のりをたどる:低リソース形態素リッチ言語における依存構文解析タスクのケーススタディ
- Authors: Jivnesh Sandhan, Amrith Krishna, Ashim Gupta, Laxmidhar Behera and
Pawan Goyal
- Abstract要約: 低リソース環境における形態素リッチ言語(MRL)の依存性解析に着目する。
これらの課題に対処するために,プリトレーニングのための簡単な補助タスクを提案する。
提案手法の有効性を評価するため,低リソース環境下で10個のMRL実験を行った。
- 参考スコア(独自算出の注目度): 14.694800341598368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural dependency parsing has achieved remarkable performance for many
domains and languages. The bottleneck of massive labeled data limits the
effectiveness of these approaches for low resource languages. In this work, we
focus on dependency parsing for morphological rich languages (MRLs) in a
low-resource setting. Although morphological information is essential for the
dependency parsing task, the morphological disambiguation and lack of powerful
analyzers pose challenges to get this information for MRLs. To address these
challenges, we propose simple auxiliary tasks for pretraining. We perform
experiments on 10 MRLs in low-resource settings to measure the efficacy of our
proposed pretraining method and observe an average absolute gain of 2 points
(UAS) and 3.6 points (LAS). Code and data available at:
https://github.com/jivnesh/LCM
- Abstract(参考訳): 神経依存性解析は、多くのドメインや言語で顕著なパフォーマンスを達成している。
大量のラベル付きデータのボトルネックは、低リソース言語に対するこれらのアプローチの有効性を制限する。
本研究では,低リソース環境におけるMRL(モルフォロジカルリッチ言語)の依存性解析に焦点を当てる。
係り受け解析作業には形態情報が必要であるが、形態的曖昧さと強力なアナライザの欠如は、MRLに対してこの情報を得るための課題を提起する。
これらの課題に対処するために,プリトレーニングのための簡単な補助タスクを提案する。
低資源環境下で10MBLの実験を行い,提案した予備訓練法の有効性を測定し,平均2点(UAS)と3.6点(LAS)の絶対利得を観測する。
コードとデータ https://github.com/jivnesh/LCM
関連論文リスト
- Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
価値に基づく強化学習は、幅広いマルチターン問題に対する効果的なポリシーを学ぶことができる。
現在の値ベースのRL法は、特に大規模な言語モデルの設定にスケールすることが困難であることが証明されている。
本稿では,これらの欠点に対処する新しいオフラインRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:36:52Z) - TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale [66.01943465390548]
本稿では,大規模言語モデルのテキスト要約能力を,コンパクトで局所的なモデルに抽出するフレームワークであるTriSumを紹介する。
本手法は,様々なベンチマーク上での局所モデル性能を向上させる。
また、要約の合理性に関する洞察を提供することで、解釈可能性も向上する。
論文 参考訳(メタデータ) (2024-03-15T14:36:38Z) - GlotLID: Language Identification for Low-Resource Languages [51.38634652914054]
GlotLID-M は広い範囲、信頼性、効率性のデシラタを満たす LID モデルである。
1665の言語を識別し、以前の作業に比べてカバー範囲が大幅に増加した。
論文 参考訳(メタデータ) (2023-10-24T23:45:57Z) - Effective Transfer Learning for Low-Resource Natural Language
Understanding [15.752309656576129]
低リソース問題に対処するために、言語横断とドメイン横断の手法の開発に注力する。
まず、タスク関連キーワードに着目して、モデルの言語間能力を改善することを提案する。
第2に,言語間適応のための秩序再現型モデリング手法を提案する。
第3に、クロスドメイン適応のための事前学習において、異なるレベルのドメイン関連コーパスと追加データマスキングを活用することを提案する。
論文 参考訳(メタデータ) (2022-08-19T06:59:00Z) - Morphological Processing of Low-Resource Languages: Where We Are and
What's Next [23.7371787793763]
注釈付きリソースが最小か全くない言語に適したアプローチに焦点を合わせます。
我々は、言語の形態を原文だけで理解する、論理的な次の課題に取り組む準備が整っていると論じる。
論文 参考訳(メタデータ) (2022-03-16T19:47:04Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
非パラメトリックニューラルネットワークモデル(NLM)は、外部データストアを用いてテキストの予測分布を学習する。
比較性能を維持しながら、推論速度の最大6倍の高速化を実現する方法を示す。
論文 参考訳(メタデータ) (2021-09-09T12:32:28Z) - Variational Information Bottleneck for Effective Low-Resource
Fine-Tuning [40.66716433803935]
低リソースターゲットタスクの微調整において,無関係な特徴を抑えるために,変動情報ボット (VIB) を提案する。
我々のVIBモデルは、自然言語推論データセットのバイアスに対してより堅牢な文表現を見つける。
論文 参考訳(メタデータ) (2021-06-10T03:08:13Z) - Adversarial Meta Sampling for Multilingual Low-Resource Speech
Recognition [159.9312272042253]
多言語メタラーニングASR(MML-ASR)を改善するための新しい逆メタサンプリング(AMS)アプローチを開発しています。
AMSは、各ソース言語のタスクサンプリング確率を適応的に決定する。
MML-ASRにAMSを適用すると、2つの多言語データセットの実験結果が大幅にパフォーマンス向上します。
論文 参考訳(メタデータ) (2020-12-22T09:33:14Z) - Low-Resource Adaptation of Neural NLP Models [0.30458514384586405]
本論文は,情報抽出と自然言語理解における低リソースシナリオを扱う手法について考察する。
ニューラルNLPモデルを開発し,学習データを最小限にしたNLPタスクに関する多くの研究課題を探索する。
論文 参考訳(メタデータ) (2020-11-09T12:13:55Z) - A Survey on Recent Approaches for Natural Language Processing in
Low-Resource Scenarios [30.391291221959545]
ディープニューラルネットワークと巨大な言語モデルが、自然言語アプリケーションにおいて一様化しつつある。
大量のトレーニングデータを必要とすることで知られているため、低リソース環境でのパフォーマンスを改善するための作業が増えている。
ニューラルモデルに対する最近の根本的な変化と、一般的なプレトレインおよびファインチューンパラダイムにより、低リソースの自然言語処理に対する有望なアプローチを調査した。
論文 参考訳(メタデータ) (2020-10-23T11:22:01Z) - Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic
Parsing [85.35582118010608]
タスク指向のセマンティックパーシングは仮想アシスタントの重要なコンポーネントである。
近年のディープラーニングの進歩は、より複雑なクエリを解析するいくつかのアプローチを可能にしている。
そこで本研究では,教師付きニューラルネットワークを10倍の精度で高速化する手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T17:47:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。