論文の概要: A Koopman Approach to Understanding Sequence Neural Models
- arxiv url: http://arxiv.org/abs/2102.07824v1
- Date: Mon, 15 Feb 2021 20:05:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 14:52:30.865314
- Title: A Koopman Approach to Understanding Sequence Neural Models
- Title(参考訳): シーケンスニューラルモデル理解のためのクープマンアプローチ
- Authors: Ilan Naiman and Omri Azencot
- Abstract要約: 訓練されたシーケンスニューラルネットワークモデルを理解するための新しいアプローチ、koopman analysis of neural networks (kann) を提案する。
時系列モデルと自己マップの関係を動機に、潜在ダイナミクスをうまくエンコードするおよそのKoopman演算子を計算します。
この結果は,コピー問題,ecg分類,感情分析タスクに対して,タスクやアーキテクチャにまたがって拡張される。
- 参考スコア(独自算出の注目度): 2.8783296093434148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new approach to understanding trained sequence neural models:
the Koopman Analysis of Neural Networks (KANN) method. Motivated by the
relation between time-series models and self-maps, we compute approximate
Koopman operators that encode well the latent dynamics. Unlike other existing
methods whose applicability is limited, our framework is global, and it has
only weak constraints over the inputs. Moreover, the Koopman operator is
linear, and it is related to a rich mathematical theory. Thus, we can use tools
and insights from linear analysis and Koopman Theory in our study. For
instance, we show that the operator eigendecomposition is instrumental in
exploring the dominant features of the network. Our results extend across tasks
and architectures as we demonstrate for the copy problem, and ECG
classification and sentiment analysis tasks.
- Abstract(参考訳): 訓練されたシーケンスニューラルネットワークモデルを理解するための新しいアプローチ、koopman analysis of neural networks (kann) を提案する。
時系列モデルと自己マップの関係を動機に、潜在ダイナミクスをうまくエンコードするおよそのKoopman演算子を計算します。
適用性に制限がある他の既存手法とは異なり、我々のフレームワークはグローバルであり、入力に対する弱い制約しか持たない。
さらに、クープマン作用素は線型であり、豊かな数学理論と関連している。
そこで本研究では,線形解析とクープマン理論からツールと洞察を利用できる。
例えば、演算子 eigendecomposition がネットワークの支配的な特徴を探索するのに役立つことを示す。
私たちの結果は、コピー問題、ECG分類および感情分析タスクのデモンストレーションとして、タスクとアーキテクチャに広がっています。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - SoK: On Finding Common Ground in Loss Landscapes Using Deep Model Merging Techniques [4.013324399289249]
本稿では,モデルマージ手法の新たな分類法を提案する。
これらの分野における文献からの反復的な経験的観察を,ロスランドスケープ幾何学の4つの主要な側面のキャラクタリゼーションに用いた。
論文 参考訳(メタデータ) (2024-10-16T18:14:05Z) - Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
畳み込みニューラルネットワーク(CNN)の忠実かつ解釈可能な説明に階層的セグメンテーション技術を用いるフレームワークを導入する。
本手法はモデルの推論忠実性を維持するモデルに基づく階層的セグメンテーションを構築する。
実験により、我々のフレームワークであるxAiTreesが高度に解釈可能で忠実なモデル説明を提供することが示された。
論文 参考訳(メタデータ) (2024-06-19T06:45:19Z) - Operator Learning Meets Numerical Analysis: Improving Neural Networks
through Iterative Methods [2.226971382808806]
演算子方程式の反復的手法に基づく理論的枠組みを開発する。
拡散モデルやAlphaFoldのような一般的なアーキテクチャは本質的に反復的演算子学習を採用していることを実証する。
本研究の目的は,数値解析から洞察を融合させることにより,ディープラーニングの理解を深めることである。
論文 参考訳(メタデータ) (2023-10-02T20:25:36Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Applications of Koopman Mode Analysis to Neural Networks [52.77024349608834]
我々は,ニューラルネットワークのトレーニング過程を,高次元の重み空間に作用する力学系と考える。
アーキテクチャに必要なレイヤ数を決定するために、Koopmanスペクトルをどのように利用できるかを示す。
また、Koopmanモードを使えば、ネットワークを選択的にプーンしてトレーニング手順を高速化できることを示す。
論文 参考訳(メタデータ) (2020-06-21T11:00:04Z) - Optimizing Neural Networks via Koopman Operator Theory [6.09170287691728]
クープマン作用素理論は近年、ニューラルネットワーク理論と密接に関連していることが示されている。
この作業では、この接続を利用するための第一歩を踏み出します。
クープマン作用素理論法は、非自明な訓練時間の範囲で、供給重みの重みと偏りの予測を可能にする。
論文 参考訳(メタデータ) (2020-06-03T16:23:07Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。