Bilevel reinforcement learning via the development of hyper-gradient without lower-level convexity
- URL: http://arxiv.org/abs/2405.19697v2
- Date: Thu, 27 Feb 2025 06:52:19 GMT
- Title: Bilevel reinforcement learning via the development of hyper-gradient without lower-level convexity
- Authors: Yan Yang, Bin Gao, Ya-xiang Yuan,
- Abstract summary: Bilevel reinforcement learning (RL) features intertwined two-level problems.<n>Non-level convex information is an impediment to developing bilevel optimization methods.<n>Hyper-gradient serves as an integration of exploitation and exploration.
- Score: 4.917399520581689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bilevel reinforcement learning (RL), which features intertwined two-level problems, has attracted growing interest recently. The inherent non-convexity of the lower-level RL problem is, however, to be an impediment to developing bilevel optimization methods. By employing the fixed point equation associated with the regularized RL, we characterize the hyper-gradient via fully first-order information, thus circumventing the assumption of lower-level convexity. This, remarkably, distinguishes our development of hyper-gradient from the general AID-based bilevel frameworks since we take advantage of the specific structure of RL problems. Moreover, we design both model-based and model-free bilevel reinforcement learning algorithms, facilitated by access to the fully first-order hyper-gradient. Both algorithms enjoy the convergence rate $O(\epsilon^{-1})$. To extend the applicability, a stochastic version of the model-free algorithm is proposed, along with results on its iteration and sample complexity. In addition, numerical experiments demonstrate that the hyper-gradient indeed serves as an integration of exploitation and exploration.
Related papers
- A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints [66.61399765513383]
We develop a BLOCC algorithm to tackle BiLevel Optimization problems with Coupled Constraints.
We demonstrate its effectiveness on two well-known real-world applications.
arXiv Detail & Related papers (2024-06-14T15:59:36Z) - Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF [82.73541793388]
We introduce the first principled algorithmic framework for solving bilevel RL problems through the lens of penalty formulation.
We provide theoretical studies of the problem landscape and its penalty-based gradient (policy) algorithms.
We demonstrate the effectiveness of our algorithms via simulations in the Stackelberg Markov game, RL from human feedback and incentive design.
arXiv Detail & Related papers (2024-02-10T04:54:15Z) - A Generalized Alternating Method for Bilevel Learning under the
Polyak-{\L}ojasiewicz Condition [63.66516306205932]
Bilevel optimization has recently regained interest owing to its applications in emerging machine learning fields.
Recent results have shown that simple alternating iteration-based iterations can match interest owing to convex lower-level objective.
arXiv Detail & Related papers (2023-06-04T17:54:11Z) - Communication-Efficient Federated Bilevel Optimization with Local and
Global Lower Level Problems [118.00379425831566]
We propose a communication-efficient algorithm, named FedBiOAcc.
We prove that FedBiOAcc-Local converges at the same rate for this type of problems.
Empirical results show superior performance of our algorithms.
arXiv Detail & Related papers (2023-02-13T21:28:53Z) - On Penalty-based Bilevel Gradient Descent Method [40.27047651949238]
We tackle the bilevel problem through the lens of the penalty method.
We propose the penalty-based bilevel gradient descent (PBGD) algorithm.
Experiments showcase the efficiency of the proposed PBGD algorithm.
arXiv Detail & Related papers (2023-02-10T11:30:19Z) - Value-Function-based Sequential Minimization for Bi-level Optimization [52.39882976848064]
gradient-based Bi-Level Optimization (BLO) methods have been widely applied to handle modern learning tasks.
There are almost no gradient-based methods able to solve BLO in challenging scenarios, such as BLO with functional constraints and pessimistic BLO.
We provide Bi-level Value-Function-based Sequential Minimization (BVFSM) to address the above issues.
arXiv Detail & Related papers (2021-10-11T03:13:39Z) - Inexact bilevel stochastic gradient methods for constrained and
unconstrained lower-level problems [0.0]
Two-level formula search optimization has become instrumental in a number of machine learning contexts.
New low-rank bi-level gradient methods are developed that do not require second-order derivatives.
arXiv Detail & Related papers (2021-10-01T18:20:14Z) - A Generic Descent Aggregation Framework for Gradient-based Bi-level
Optimization [41.894281911990554]
We develop a novel Bi-level Descent Aggregation (BDA) framework for bi-level learning tasks.
BDA aggregates hierarchical objectives of both upper level and lower level.
We propose a new proof recipe to improve the convergence results of conventional gradient-based bi-level methods.
arXiv Detail & Related papers (2021-02-16T06:58:12Z) - A Generic First-Order Algorithmic Framework for Bi-Level Programming
Beyond Lower-Level Singleton [49.23948907229656]
Bi-level Descent Aggregation is a flexible and modularized algorithmic framework for generic bi-level optimization.
We derive a new methodology to prove the convergence of BDA without the LLS condition.
Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules.
arXiv Detail & Related papers (2020-06-07T05:18:50Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.