Bayesian Optimization Priors for Efficient Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2406.14627v1
- Date: Thu, 20 Jun 2024 18:00:12 GMT
- Title: Bayesian Optimization Priors for Efficient Variational Quantum Algorithms
- Authors: Farshud Sorourifar, Diana Chamaki, Norm M. Tubman, Joel A. Paulson, David E. Bernal Neira,
- Abstract summary: Quantum computers currently rely on a quantum-classical approach known as Variational Quantum Algorithms (VQAs) to solve problems.
We propose a hybrid framework for basic computational optimization that reduces the number of shots per time is charged.
Using both proposed features, we show that using both proposed features statistically outperforms an implementation within VQAs for simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers currently rely on a hybrid quantum-classical approach known as Variational Quantum Algorithms (VQAs) to solve problems. Still, there are several challenges with VQAs on the classical computing side: it corresponds to a black-box optimization problem that is generally non-convex, the observations from the quantum hardware are noisy, and the quantum computing time is expensive. The first point is inherent to the problem structure; as a result, it requires the classical part of VQAs to be solved using global optimization strategies. However, there is a trade-off between cost and accuracy; typically, quantum computers return a set of bit strings, where each bitstring is referred to as a shot. The probabilistic nature of quantum computing (QC) necessitates many shots to measure the circuit accurately. Since QC time is charged per shot, reducing the number of shots yields cheaper and less accurate observations. Recently, there has been increasing interest in using basic Bayesian optimization (BO) methods to globally optimize quantum circuit parameters. This work proposes two modifications to the basic BO framework to provide a shot-efficient optimization strategy for VQAs. Specifically, we provide a means to place a prior on the periodicity of the rotation angles and a framework to place a topological prior using few-shot quantum circuit observations. We demonstrate the effectiveness of our proposed approach through an ablation study, showing that using both proposed features statistically outperforms a standard BO implementation within VQAs for computational chemistry simulations.
Related papers
- A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - The Variational Quantum Eigensolver: a review of methods and best
practices [3.628860803653535]
The variational quantum eigensolver (or VQE) uses the variational principle to compute the ground state energy of a Hamiltonian.
This review aims to provide an overview of the progress that has been made on the different parts of the algorithm.
arXiv Detail & Related papers (2021-11-09T14:40:18Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Unitary Block Optimization for Variational Quantum Algorithms [0.0]
We describe the unitary block optimization scheme (UBOS) and apply it to two variational quantum algorithms.
The goal of VQE is to optimize a classically intractable parameterized quantum wave function to target a physical state of a Hamiltonian.
We additionally describe how UBOS applies to real and imaginary time-evolution.
arXiv Detail & Related papers (2021-02-16T19:00:05Z) - An optimal quantum sampling regression algorithm for variational
eigensolving in the low qubit number regime [0.0]
We introduce Quantum Sampling Regression (QSR), an alternative hybrid quantum-classical algorithm.
We analyze some of its use cases based on time complexity in the low qubit number regime.
We demonstrate the efficacy of our algorithm for a benchmark problem.
arXiv Detail & Related papers (2020-12-04T00:01:15Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.